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Abstract. The growing availability of measurement devices in the op-
erating room enables the collection of a huge amount of data about the
state of the patient and the doctors’ practice during a surgical operation.
This paper explores the possibilities of generating, from these data, deci-
sion support rules in order to support the daily anesthesia procedures. In
particular, we focus on machine learning techniques to design a decision
support tool. The preliminary tests in a simulation setting are promising
and show the role of computational intelligence techniques in extracting
useful information for anesthesiologists.

1 Introduction

Machine learning and data mining are key technologies in order to transform
data into useful information for better diagnosis, event detection and decision
aid. This paper deals with the anesthesia domain where several platforms have
recently been made available to support the anesthesiologist in the operating
room. An example is the TOOLBOX software [1] which has been used for several
years by the group of anesthesiology of the ULB Erasme Hospital1. This software

TOOLBOX
Patient

Monitoring

Surgeon

Target Delivery
rate

Not measured information

Other actions

Database Predictive
model

(e.g. BIS)

Anesthesiologist

Fig. 1. The TOOLBOX software and the anesthesia procedure.

monitors the patient’s state and acts as a servo-controller on the multiple intra-
venous drug infusions, whose setting is regularly adjusted by the anesthesiologist,

1 L’Hôpital Erasme is the university hospital of Université Libre de Bruxelles (ULB),
Brussels, Belgium.



by simultaneously using pharmacokinetic and pharmacodynamic principles [2]
(Figure 1). Before and during the operation, TOOLBOX stores necessary statis-
tics and monitoring information like: (i) basic details regarding the doctor, the
patient and his general state, (ii) the type of surgery, (iii) the evolution of the
hemodynamic and physiological parameters (e.g. the BIS) of the patient, (iv) the
evolution of the drugs concentration levels chosen by the anesthesiologist. In this
study, 910 surgical intervention sessions are used to build the database.

This paper discusses and assesses the role of machine learning techniques
in extracting useful information from the database generated by TOOLBOX in
order to test and develop a decision support tool to assist the anesthetist during
his routine procedure. In particular, we will focus on the impact of the brain
concentration of Propofol on the hypnosis upon monitoring with the bispectral
index. The bispectral index (BIS) [3, 4] is a well-known measure adopted by
anesthesiologists to rate the depth of the hypnosis. The BIS index represents the
electro-encephalographic signal in a normalized range from 100 to 0, where 100
stands for the “awake” status and 0 stands for electrical silence. Propofol is a
short-acting intravenous hypnotic agent used for the induction and maintenance
of general anesthesia. According to some information about the patient and the
target Propofol brain concentration, the decision support tool will give informa-
tion on the future BIS value of the patient that will help the anesthesiologist to
take the best decision regarding the drugs modification. A correlation technique
is used to estimate the time between the Propofol target brain concentration
modification and its impact on the BIS index.

In this paper, we will assess and compare a linear model and a local learning
approach called the lazy learning [5]. The learning procedure is supported by
a forward feature selection procedure to reduce the input dimensionality of the
prediction problem. This step is very important since there is a large number
of variables (e.g. the patient age, the surgery type, the phase of the operation,
etc.) which could influence the value of the BIS signal.

The main contributions of this paper are (i) the application of a system
identification procedure on a huge database concerning the relation between the
drug modification and the impact on the BIS index, (ii) the comparison of the
accuracy between a classical linear model and a local linear model (lazy learning)
(iii) the execution of a forward variable selection to extract the most relevant
input variables.

2 Learning the predictive model

The goal of our decision support architecture is to assist the anesthetist in ad-
justing the concentration of the Propofol drug in order to let the BIS of the
patient attain the desired level. Suppose that the dynamics of the BIS index
can be described by a single-input single-output (SISO) NARMAX (Nonlinear
AutoRegressive Moving Average with eXternal input) discrete-time dynamic
system [6]

B(t + ∆t∗) = f(B(t), tpo(t), tpn(t),∆timeP, tr(t), a, w, h, s, lbm) + ǫ(t) (1)



where, at time t, B(t) is the BIS value3, tpo(t) (in µg/ml) is the old concen-
tration of Propofol, tpn(t) is the new concentration of Propofol (action of the
anesthetist), ∆timeP is the time between t and the previous Propofol modifica-
tion and tr(t) ∈ [4, 6] (in ng/ml) is the concentration of Remifentanil. Also, a,
w, h, s, lbm are, respectively, the age, the weight, the height, the sex and the
lean body mass of the patient. ǫ(t) is random noise and ∆t∗ is the time delay
which maximizes the correlation between drug modification and BIS variation.

We apply a system identification procedure [6] to the samples collected by
TOOLBOX to estimate the model

B̂(t + ∆t∗) = f̂(B(t), tpo(t), tpn(t),∆timeP, tr(t), a, w, h, s, lbm, αN ) (2)

where αN is a vector containing the parameters of the model.
Let us define as query point q the vector containing all the input vari-

ables. We identify the system by using a training set of N = 1702 measures
{Bi(t + ∆t∗), qi(t)} , i = 1, . . . , N . The sample (Bi(t + ∆t∗), qi(t)) means that
(i) we observed at time t + ∆t∗ the BIS value Bi(t + ∆t∗), (ii) the target con-
centration of Propofol was set at time t and (iii) no other modification of the
Propofol target occurred during the interval [t, t + ∆t∗].

The simplest learning approach boils down to a conventional linear identifi-
cation [7]. However, when linear identification does not return a sufficiently ac-
curate prediction, the designer may want to use alternative methods for learning
non-linear relationships. This paper adopts a method of local modeling, called
lazy learning, which proved to be successful in many problems of non-linear mod-
eling [8] and in two international competitions on data analysis and time series
prediction [9].

The learning procedure is preceded by a feature selection step in order to
reduce the dimensionality of the problem. We use a sequential forward selec-

tion [10] where a leave-one-out cross-validation procedure is used to assess the
accuracy of the input sets. This procedure is useful both for statistical reasons
and to return to the anesthesiologist high-level information about which vari-
ables play a role on the evolution of the patient physiological parameters.

3 Results

This section summarizes the results of the different BIS predictors assessed dur-
ing the forward selection procedure. Three leave-one-out criteria are used to as-
sess the accuracy of the predictive models. Let Êloo

i = B̂(−i)(t+∆t∗)−Bi(t+∆t∗)

be the leave-one-out error made on the sample i where B̂(−i)(t + ∆t∗) is the
prediction for the sample i returned by a model trained on all the samples
except i. The first criterion is the normalized mean squared error NMSE =

∑
N

i=1(Êloo

i )
2

∑
N

i=1
(µ̂b−Bi(t+∆t∗))2

where µ̂b = 1/N
∑N

i=1 Bi(t+∆t∗) is the average of the future

3 In order to smooth the fluctuations, B (t) is the time average of the BIS over the
interval [t − 30, t] and B (t + ∆t) is the time average over the interval (t + ∆t −

30, t + ∆t + 30).
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Fig. 2. Results of the sequential forward selection process for a linear model (left) and
a lazy learning predictor (right).

BIS index. This quantity is greater than zero and normalizes the performance of
the predictor with respect to the variance of the signal to be predicted. A value
of NMSE= 1 means that we are simply predicting the average of the BIS series.

The second criterion is the mean of the absolute errors MAE = 1
N

∑N
i=1

∣∣∣Êloo
i

∣∣∣
which returns an indication of the average magnitude of the errors made by the
decision support system. The last criterion returns the percentage (P ) of times
that the variation of the BIS is wrongly predicted.

P = 100



1 −

∑N
i=1 I

[(
B̂(−i)(t + ∆t∗) − Bi(t)

)
· (Bi(t + ∆t∗) − Bi(t))

]

N





(3)

where I [A] =

{
1 if A ≥ 0,

0 if A < 0.
.

In both cases (linear and lazy) the forward selection procedure confirms the
importance of taking into account the value of the current BIS index as well as
the new and the old targets of Propofol. Note that most of the other variables
(age, sex, . . .) are integrated in the pharmacokinetic model used by TOOLBOX
and this could explain the fact that these variables are discarded by the selection
procedure.

The last experiment compares a linear predictor Λlin
S3

and a lazy predictor

Λlazy
S3

both taking as inputs the current BIS value, the previous and the cur-
rent Propofol target. Table 1 reports the three criteria accuracy figures for the
linear model Λlin

S3
and the lazy predictor Λlazy

S3
. According to a paired-t test all

the differences are significant. This means that the lazy predictor significantly
outperforms the linear one and suggest the existence of a nonlinear relationship
linking the target of Propofol and the BIS signal.



model NMSE MAE P

Λlin
S3

0.437 6.35 18.2

Λ
lazy
S3

0.395 5.91 16.9

Table 1. Three measures of BIS prediction error for the linear (Λlin
S3

) and the lazy

(Λlazy
S3

) model.

4 Conclusion and future work

This paper compares conventional linear and machine learning prediction tech-
niques in a predictive modeling task. The encouraging results show that pre-
dictive models can extract useful information from historical data and provide
support to the decisions of anesthetists during surgical operations. Future work
will focus on the implementation of a prototype to be tested, in real conditions,
during daily operations in the operating room.
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