
Embeddings of Categorical Variables for
Sequential Data in Fraud Context

Yoan Russac1, Olivier Caelen2, and Liyun He-Guelton2

1 ENSAE ParisTech, Paris, France
yoan.russac@ensae-paristech.com,

2 R&D Worldline Brussels, Belgium and Lyon, France
firstname.lastname@worldline.com,

Abstract. In this paper we propose a new generic method to work with
categorical variables in case of sequential data. Our main contributions
are: (1) The use of unsupervised methods to extract sequential informa-
tion, (2) The generation of embeddings including this information for cat-
egorical variables using the well-known Word2Vec neural network. The
use of embeddings not only reduced the memory usage but also improved
the machine learning algorithms learning capacity from data compared
with commonly used One-Hot encoding for example. We implemented
those processes on a real world credit card fraud dataset, which repre-
sents more than 400 million transactions over a one year time window.
We demonstrated that we were able to reduce the memory usage by 50%
and to improve performance by 3% while using only a small subset of
features.

Keywords: Categorical Variable, Word2Vec, Embeddings, Credit Card
Fraud detection

1 Introduction

In a steadily growing e-commerce market with an overall loss due to fraudsters
of 6.97 cents per every $100 in 2016, detecting fraudulent pattern is of great
importance. Fraud data possesses particularities: unbalanced class, concept drift,
large amount of data, difficulty to define a cost function, overlapping, etc. [1].
For those reasons, fraud detection has gained popularity amongst the machine
learning community during the past decade [1, 9].

Another difficulty in fraud detection is that categorical variables are over-
represented with more than 80% of our total variables. These variables vary
amongst others, including the country of the transaction, the merchant type,
the currency used, etc. If we do not find a correct representation of these vari-
ables, the machine learning algorithms will not be effective. A standard way to
deal with a categorical variable is One-Hot encoding. However, One-Hot vectors
have two main shortcomings: (1) They are high-dimensional and sparse. (2) The
relations between different values of categorical variables is ignored [2]. It was
demonstrated in [2] that using a supervised method to create embeddings for

2 Yoan Russac, Olivier Caelen, and Liyun He-Guelton

categorical variables reduced the memory usage and improved the performance
of the neural network as it gave a better data representation. Here, we pro-
pose an unsupervised method for our sequential fraud data. The advantage of
unsupervised based methods is their flexibility for injecting different semantic
knowledges such as external sources [11]. In our case, we used this approach to
inject the sequential pattern of the transactions.

We proceeded the following way: we created sequences centered on the dif-
ferent cardholders. Once we had a set of sequences for different cardholders, we
used an internal process for generating the embeddings with Word2Vec [5, 6].
Word2Vec is a neural network frequently used for Natural Language Processing
(NLP) tasks [7, 10].

This paper is organized as follows: in section 2 we describe our approach, in
section 3 we describe the credit card dataset and the experiment we did. Finally
section 4 conclude with an outlook and our future work.

2 Approach

The Word2Vec neural network is often used to learn linguistic regularities by
representing words with vectors. The ordinary usage of this neural net is to
feed it with sentences from a corpus of documents and to collect the embedding
vectors after a training phase. Our process is very similar. The equivalent of the
sentences will be variable sequences from our fraud dataset. These sequences
will then be used to train the Word2Vec neural network. In this section, we will
describe our approach: how we obtained the sequences and how we generated
the embeddings using Word2Vec.

2.1 Sequences Generation

There are two ways to generate the sequences. We can either generate sequences
for each categorical variable or for joint variables. The joint variable can in
addition of the sequential information take into account the interactions between
different categorical variables.

Univariate Sequences Generation: In the first case, to create our se-
quences we decided to group the entire training set by cardholders. For example
if the cardholder A bought during the days corresponding to the training set,
in France, then in Belgium, and after that back in France, the associated sen-
tence will be ’France Belgium France’. We proceeded the same way with all the
cardholders in our training set. After this process we had a collection of sen-
tences where each sentence was linked to the list of transactions of a particular
cardholder. This process was repeated for every categorical variable.

Multi-variate Sequences Generation: In a fraud context the joint infor-
mation of the country of the transaction and the merchant type really mattered.
Variables used to monitor suspicious activity included this information. When
using One-Hot encoding there was no easy way to have this sequential infor-
mation. With two categorical variables we could decide to create their product,

Categorical Variables Unsupervised Embeddings 3

where for example ’FRA’ and merchant type = ’1010’ will give us ’FRA1010’.
Once this new interaction variable was created, it was possible to use the pre-
vious procedure to create the embeddings for the joint variable. By doing so we
could create any interaction variables between categorical variables and extract
its sequential information through the use of our unsupervised embeddings.

Generating the sequences this way was meaningful because unlike the One-
Hot encoding which only included the information of the current transaction,
with this process the embeddings would extract some of the information of the
sequences of transactions which can help detecting uncommon behaviors.

2.2 Word2Vec

The embeddings extracted from Word2Vec reflect the linguistic regularities and
semantic information of the input word sequences. The outputs of the Word2Vec
tool are the embedding vectors. A fundamental notion to comprehend the net-
work is the context window. The context window represents the words surround-
ing a given word in a sentence. It contains past words but also future words.
When using Word2Vec one has to set the size of the context window and the
dimension of the embeddings to create the right neural architecture.

The neural network: Word2Vec contains 3 layers. The input layer, one
hidden layer and the output layer. It is worth mentioning that two predictive
methods are possible when using Word2Vec. The first one is skip-gram architec-
ture, where given an input word context words are predicted. The second one is
the CBOW (continuous bags-of-words) where given a context window we try to
predict the appropriate word. We will focus on the CBOW predictive method.
The significant part of the network is the weights between the hidden layer and
the output layer. These weights are updated during the back propagation. At
the end of the update the embedding vectors will be the weight matrix. The
structure of the neural network is represented in the Fig. 1 where V denotes the
cardinal of the vocabulary (i.e. the different words in the corpus) and N denotes
the dimension of the embedding vectors (i.e. the hidden layer has N dimensions).

With a CBOW structure the matrix of interest is W̃ . In the input layer, which
contains C parts, where C is the context window’s size, each one of the input
words is one-hot encoded, thus each input block has a V -dimension. During the
training phase the weights of the matrix W̃ will be updated and after a sufficient
number of iterations over the corpus, the embedding vectors are available.

The neurons colored in blue in the Fig. 1 are 0 with a unique 1 per block
because the input words are one-hot encoded. They are C blocks corresponding
to a C-size context window. The output of neural net is probabilities this is why
the output layer is not colored in blue.

Subsampling frequent words: In a large corpus stop-words can be really
frequent. Observing co-occurrence of a frequent word and another word will
bring less information. To counter this imbalance between occurrences of words
in the corpus, a discard probability taking into account the frequency of the word
was introduced [6]. The more frequent a word in the sentences is the higher the

4 Yoan Russac, Olivier Caelen, and Liyun He-Guelton

Fig. 1. Architecture of Word2Vec with CBOW technique

probability of being discarded will be. In our context because our data are coming
from a Belgian payment processor, the country Belgium was overrepresented in
the dataset. This is why we used undersampling technique.

Negative sampling : The idea behind negative sampling is to update only
a sample of the output vectors at each iteration instead of updating the entire
weight matrix.

These two extensions not only significantly reduced the computational re-
quirements of the training process but also improved the quality of the embed-
ding vectors [6].

3 Experiment

In this section we present our experiments. We compared the prediction’s qual-
ity of several data structures: (1) One-Hot for every categorical variable, (2)
Embedding for every categorical variable, (3) One-Hot and Embedding for ev-
ery categorical variable (OHE in the different figures). We used either Logistic
Regression or Random Forests to compare the precisions.

3.1 Data and Experimental Design

Data: We worked on a labeled dataset provided by Worldline company. This
set contained one year of transactions. Each day was composed of approximately
500 000 transactions. We decided to keep 3 categorical variables: merchant type,
country of the transaction, local currency and a quantitative variable which is the
amount of the transaction. Specialists in the fraud detection domain use much
more variables [1] but our aim was to compare the quality of the prediction.
Please note that transactions must be separated in two categories: e-commerce
transactions which take place on the Internet and physical transactions in other

Categorical Variables Unsupervised Embeddings 5

words face-to-face ones. For example if a cardholder A makes face-to-face trans-
actions in America and in Belgium in a short time period there is probably
something uncommon happening. However if they are e-commerce transactions
it is more likely. We generated different embedding vectors in function of the
e-commercial status of the transaction.

Experimental Design: Our experiment was structured the following way:
(1) Randomly select an initial date. Create the corresponding training and test-
ing set. (2) Files processing along the required structure (One-Hot, embeddings).
(3) Apply the algorithm on this processed training and testing files. The process
was repeated 100 times and is illustrated with algorithm 1

Algorithm 1 Experimental Design

Require: D: dataset, Processing method, L: learning algorithm
1: Prediction list← []
2: d1, .., d100 ∼ Sample(100, length(D)) . Select 100 initial date
3: for dn ∈ {d1, ..., d100} do
4: (Training set, Testing set)← ((dn, dn+1, dn+2), dn+3)
5: Training set← Processing method(Training set)
6: Model← L(Training set)
7: Prediction list← Prediction list + [Model.fit(Testing set)]
8: end for
9: return Prediction list . Predictions for the 100 testing files

3.2 Treatment of Categorical Variable

We used the Python’s gensim3 package [8] to generate the embeddings. It has a
very efficient implementation of Word2Vec. We created a list of list containing all
the sentences from users in the 3 days training set. The sequences were obtained
following the method presented in subsection 2.1. For every categorical variable,
we then had to train the Word2Vec neural network feeding it the associated
sequence. For a given categorical variable we built a dictionary where every level
of the variable was mapped to the associated embedding vector. We were then
able to integrate these embedding vectors to a Pandas4 dataframe.

As explained in the subsection 2.2 several parameters could be set for the
configuration of Word2Vec. In our experiment we have chosen a context window
of size 5, which mean that in best case scenario the five previous words and
the five following words would be considered. We chose the CBOW predictive
technique because we empirically noticed that it outperformed the Skip-Gram
architecture for the experiment. Negative sampling was used with 5 noise words
per training. The threshold for subsampling frequent words was set to 10−3. The

3https://radimrehurek.com/gensim/
4http://pandas.pydata.org/

6 Yoan Russac, Olivier Caelen, and Liyun He-Guelton

embeddings were generated with this configuration. Several embeddings dimen-
sions were tested (see Table 1).

We also created an extended model where we computed the embeddings of
the variable Country × Merchant Type. It is another advantage of embeddings
which allows to create the interaction between several categorical features.

3.3 Resampling method

Before applying a Logistic Regression or Random Forests on the different training
sets we had to deal with this unbalanced distribution issue (less than 0.2% of our
entire dataset are fraudulent transactions). Machine learning algorithms usually
perform poorly on such a training set [3]. We adopted a strategy similar to the
EasyEnsemble strategy [4]. EasyEnsemble learns different aspects of the original
majority class in an unsupervised manner. This is done by creating different
balanced training sets by undersampling, learning a model for each dataset and
then combining all predictions as in bagging. For a given training set our method
was the following: (1) Collect every fraudulent transaction. (2) Select randomly
a given number of non fraudulent transactions in the training set so that the
proportion of non fraudulent transaction vs. fraudulent transaction in the new
artificially created dataset will be 80%. (3) Create a model with this new dataset.
We had to repeat (1-3) at least 100 times. To obtain a prediction on a new
testing example, we took the average of the predicted probabilities of all the
models created.

3.4 Performance measure

With fraud classification problems we have very unbalanced classes. Therefore
classical performance measures are not suitable. With an overall proportion of
0.2% of frauds, classifying every transaction as a legitimate one gave an accu-
racy (i.e. proportion of correct classification) of 99.8%, even if the model was
absolutely naive. We also aimed to use measures which made sense for real world
fraud detection. Fraud experts check manually only hundreds of transactions (in
function of the size of the team). Therefore we used the precision at k (p@k)
which is the proportion of real frauds among the k riskiest transactions accord-
ing to the chosen algorithm [1]. For example if p@100 = 20% then among the
100 riskiest transaction for the model, 20 of them were truly frauds.

The p@k measure was somewhat variable, thus to compare the models we
wanted to use a more global metric. Using the average of the K first transactions
p@k made sense in order to measure the global performance. Therefore we used
the following metric:

Average p@K =
1

K

K∑
i=1

p@i (1)

Categorical Variables Unsupervised Embeddings 7

As already discussed in [1] there was no need to observe the quality of the model
beyond K transactions with this metric because fraud experts were unlikely to
manually check more than K transactions in a single day. In our experiment, we
fixed K at 500.

3.5 Results

To sum up the experiment, we ran the model on 100 different 4-day-periods.
For each one of those periods, we used a resampling method. This resampling
method consisted in building 100 new datasets which were extracted from the
training set and where classes are much more balanced.

When we created embedding vectors we manually chose their dimensions (N).
As far as we know, there is no theory to know which dimension one should
consider. In practice we chose them empirically. On average, the more levels a
categorical variable had the larger the dimension we took because we assumed
that higher dimensions would allow us to gather more precise information on the
sequences of transaction. With our data the country variable had 180 levels, the
merchant type had more than 600 levels and the local currency had 150 levels.
We created four different sizes which are gathered in the Table 1. The interaction
variable is only included when it is specified that the model is extended.

Table 1. Embedding configurations (N) of the experiment

Variables Country Merchant Type Local Currency Country × Merchant Type

Small dim 10 25 25 50
Med. dim 25 50 50 NA
Large dim 50 75 75 NA

Large High dim 80 150 150 NA

Logistic Regression : We implemented a logistic regression using the Python’s
package scikit-learn5 and compared the results with One-Hot encoding versus
other configurations. The results are reported on the Fig. 2 and Fig. 3. On the
Fig. 2 we represented the Average p@500 and their t−based confidence intervals
(α = 0.05). It shows that with small or medium dimensions using only embed-
dings was less effective than the classic One-Hot encoding but higher dimension
improves the performance. Combining One-Hot encoding and embeddings gave
an Average p@500 of 8.2% which must be compared to the 5.8% Average p@500
of the One-Hot encoding. Our method improved from 2.4% the results in a Lo-
gistic Regression configuration and was statistically better than a plain One-Hot.

Three main conclusions to be drawn were: (1) On average, the higher the
embedding dimension was, the better the results were. But the difference was
not significant with only 3 variables. (2) Embedding vectors gave slightly better
results than One-Hot encoding but with a use of far less memory. In our example

5http://scikit-learn.org/stable/

8 Yoan Russac, Olivier Caelen, and Liyun He-Guelton

the memory usage of the dataframe containing 3 days of data with embedding
vectors with small dimensions was 2 times less than with One-Hot. (3) Combining
One-Hot and embedding techniques gave us better results than using One-Hot
only. The p@100 gained 3% to 4% when we combined the techniques and thus
enriched the data.

Random Forests: We implemented a Random Forests algorithm using
scikit-learn and compared the results with One-Hot encoding versus other con-
figurations. We reported the Average p@500 for the different methods on the
Fig. 4. With a non-linear algorithm the results were different. (1) The Average
p@500 was much higher than with a Logistic Regression. (2) The previous remark
concerning the dimensions of the embeddings seemed infringed with this algo-
rithm. (3) Adding One-Hot to the embeddings was less effective, but embeddings
alone performed significantly better than a raw One-Hot encoding according to
this metric. The Average p@500 when using One-Hot encoding was less than
37.5% and it was around 40% when using embeddings. (4) When we observed
the 95% confidence intervals (Fig. 4) we could assure that we have a significant
improvement when using embeddings.
The best model for the different configurations are represented in the Fig. 5.

Remark: The confidence intervals are larger than with the Logistic Regression
algorithm because the p@k vary much more with Random Forests than with
Logistic Regression (as can be seen on Fig. 3 and Fig. 5)

On the Table. 2 we reported p@k for different values of k when using Ran-
dom Forest with small embeddings configuration on the extended model. The
extended model slightly outperformed the plain one. Different k values in the
table demonstrated that the integration of the joint variable was a moderate
success.

Table 2. Comparison between extended model and non extended one

Small Embeddings Small Extended Embeddings

p@50 55.31% 55.33%
p@150 43.27% 43.63%
p@250 37.48 % 37.73%
p@500 28.5% 28.72%

The conclusions for the Random Forest algorithm were: (1) Using non linear
algorithm to detect fraudulent pattern performed well because p@100 rose from
9% in the best case scenario when using Logistic Regression to almost 48 % with
Random Forest. (2) Replacing the One-Hot encoding worked: e.g. the p@100
performance increase from more than 3% by using them. (3) As can be seen in
the Table. 2 using the extended model with the joint variable improved slightly
the performance for different p@k measures. In average we achieved a 0.2%
improvement by adding the joint variable.

Categorical Variables Unsupervised Embeddings 9

Fig. 2. Average p@500 and confidence
interval using Logistic Regression (plot
order follows the legend)

Fig. 3. p@k in function of k with differ-
ent encoding methods using Logistic Re-
gression

Fig. 4. Average p@500 and confidence
interval using Random Forest (plot order
follows the legend)

Fig. 5. p@k in function of k with differ-
ent encoding methods using a Random
Forest algorithm

4 Conclusions

In this paper we made the following contributions: (1) We implemented a generic
method to generate unsupervised embeddings for categorical variables and ap-
plied it to credit card fraud detection. This method can be used for any se-
quential data and allows to inject sequential information through embeddings.
(2) We created the embeddings in two different ways: for each categorical vari-
able independently and for joint variables. By doing so we enriched the dataset.
(3) Combining One-Hot encoding and embeddings improved the p@100 perfor-

10 Yoan Russac, Olivier Caelen, and Liyun He-Guelton

mance, which is one of Worldline’s performance metric, by 3% for both algo-
rithms. (4) When using low dimensional embeddings we reduced the memory
usage by 50% in comparison to One-Hot encoding. We proved that the fraud
detection performance (Average p@500) was enhanced with the support of the
95% confidence level.

Due to the time constraint and heavy computation charge, we only tested our
approach with 3 categorical variables and a small time window. In the future,
we will extend our experiments with all categorical variables (≈ 20 variables)
and a larger time window. We also plan on implementing these methods in a
online learning context and integrating the embeddings in an advanced machine
learning algorithm, such as LSTM neural network, to verify its efficiency.

References

1. Andrea Dal Pozzolo, Olivier Caelen, Yann-Ael Le Borgne, Serge Waterschoot, and
Gianluca Bontempi. Learned lessons in credit card fraud detection from a practi-
tioner perspective. Expert systems with applications, 41(10):4915–4928, 2014.

2. Cheng Guo and Felix Berkhahn. Entity embeddings of categorical variables. CoRR,
abs/1604.06737, 2016.

3. Nathalie Japkowicz and Shaju Stephen. The class imbalance problem: A systematic
study. Intelligent data analysis, 6(5):429–449, 2002.

4. Xu-Ying Liu, Jianxin Wu, and Zhi-Hua Zhou. Exploratory undersampling for
class-imbalance learning. IEEE Transactions on Systems, Man, and Cybernetics,
Part B (Cybernetics), 39(2):539–550, 2009.

5. T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word
representations in vector space. CoRR, abs/1301.3781, 2013.

6. T. Mikolov, I. Sutskever, K. Chen, G. S Corrado, and J. Dean. Distributed repre-
sentations of words and phrases and their compositionality. In Advances in Neu-
ral Information Processing Systems 26, pages 3111–3119. Curran Associates, Inc.,
2013.

7. C. Musto, G. Semeraro, M. De Gemmis, and P. Lops. Word embedding tech-
niques for content-based recommender systems: An empirical evaluation. In RecSys
Posters, 2015.

8. Radim Rehurek and Petr Sojka. Software framework for topic modelling with large
corpora. In In Proceedings of the LREC 2010 Workshop on New Challenges for
NLP Frameworks. Citeseer, 2010.

9. I. Trivedi and M. M. Monika. Credit card fraud detection. International Journal
of Advanced Research in Computer and Communication Engineering, 5(1), 2016.

10. Yujun Wen, Hui Yuan, and Pengzhou Zhang. Research on keyword extraction
based on word2vec weighted textrank. In Computer and Communications (ICCC),
2016 2nd IEEE International Conference on, pages 2109–2113. IEEE, 2016.

11. K. Ziegler, O. Caelen, M. Garchery, M. Granitzer, L. He-Guelton, J. Jurgovsky,
P.-E. Portier, and S. Zwicklbauer. Injecting semantic background knowledge into
neural networks using graph embeddings. In Enabling Technologies: Infrastructure
for Collaborative Enterprises (WETICE), 2017 IEEE 26th International Confer-
ence on, pages 200–205. IEEE, 2017.

