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Abstract—Credit card fraud detection raises unique challenges
due to the streaming, imbalanced, and non-stationary nature
of transaction data. It additionally includes an active learn-
ing step, since the labeling (fraud or genuine) of a subset
of transactions is obtained in near-real time by human in-
vestigators contacting the cardholders. These challenges and
characteristics have traditionally been studied separately in
the literature. In this paper, we investigate how previously
proposed techniques can be combined to improve fraud de-
tection accuracy. In particular, we highlight the existence of
an exploitation/exploration tradeoff for active learning in the
context of fraud detection, which has so far been overlooked
in the literature. Relying on a real-world dataset of millions of
transactions provided by our industrial partner Worldline, we
performed an extensive experimental analysis in order to assess
how traditional active learning strategies can be improved by
using complementary machine learning techniques. We find
that the baseline active learning strategy, denoted High Risk
Querying, is a robust strategy, which can be further improved
by combining it with Semi-Supervised learning.

1. Introduction

The use of machine learning for credit card fraud de-
tection requires to address three major problems: the class
imbalance of the training set (many more genuine trans-
actions than fraudulent ones), the nonstationarity of the
phenomenon (due to changes in the behavior of customers
as well as in fraudsters) and the labeling bottleneck (due to
the cost of assessing transactions by human investigators)
[1]. In this context, an automatic Fraud Detection System
(FDS) should support the activity of the investigators by
letting them focus on the transactions with the highest fraud
probability. From the perspective of the transactional service
company, this is crucial in order to reduce the costs of the

investigation activity and keep high the confidence of the
customers. From a machine learning perspective, however,
it is important to keep an adequate balance between ex-
ploitation and exploration, i.e. between the short-term needs
of providing good alerts to investigators, and the long-term
goal of maintaining a high accuracy of the system (e.g. in
the presence of concept drift).

The issue of labeling the most informative data by
minimizing the cost has been extensively addressed by active
learning which can be considered as a specific instance of
semi-supervised learning [2], [3], the domain studying how
unlabeled and labeled data can both contribute to a better
learning process. Active learning (AL) literature proposed
a number of techniques to select, within a large set of
unlabeled instances, the most informative to label. Active
learning can be typically described by the iteration of three
steps [3]:

1) Selection: given a query budget of size k, a model is
used to choose which k data points, once labeled, could
better describe the data generating process;

2) Querying: selected points are submitted to an oracle
(in our case an investigator) for labeling;

3) Training: the labeled data points are used to
train/update the model;

The Selection and Querying steps differentiate active learn-
ing from conventional (passive) learning, which is limited
to the Training dataset. Note also that, in order to bootstrap
the procedure, a random initialization or an unsupervised
model is commonly used [3].

We can distinguish between two main AL approaches
according to the nature of the dataset: pool-based and
streaming AL. In pool-based AL, the algorithm performs
queries in the same set of unlabeled points, while in stream-
based AL, the set of unlabeled data points is periodically
updated. The accuracy of a pool-based AL classifier is



expected to grow in time, since more and more labeled data
points are used for the Training. This is not always true in
the case of the streaming approach, since data received in
different periods may differ significantly (e.g. concept drift).

Though the number of AL works is large [4], [5], very
few address the other aspects of credit card fraud detection
(Section 2), notably the class imbalance [6], [7] (in our
case study approximately only 0.2% of transactions are
fraudulent), the restricted labeling budget [8], [9] and the
specific nature of the assessment [10]. In fact, it is worth
to remark that in credit card fraud detection, though the
observations are at the level of transactions, the ultimate
goal is to detect fraudulent cards, i.e. there exists a one-
to-many relation between cards and transactions. Also what
is peculiar is that the labeling and the assessment phase
are coincident (and consequently strongly dependent), in the
sense that what matters more for the transactional company
is that investigations are as successful as possible (i.e. low
false positive rate). This means that the accuracy of a FDS
is measured in terms of precision over the top k alerted
credit cards [11], [12]. This is not always the case in other
AL tasks where the labels of the k queried points are not
directly related to the accuracy of the training process. In a
FDS it is not only important to minimize the labeling cost
but also that this labeling allows to discover as many frauds
as possible. This means that the nature and the intensity of
the exploration step has a strong impact on the final accuracy
of detection and that, accordingly, the set of state-of-the-
art AL strategies which are effective in practice is much
more limited than expected. In other terms no real-life FDS
could afford a totally random labeling process since this
would necessarily imply an unacceptable short-term random
performance. This exploitation/exploration tradeoff inherent
to fraud detection has, to the best of our knowledge, not yet
been addressed in the research literature.

The main contributions of this paper are: i) an extensive
comparison of streaming AL techniques (and a number of
their variants) for the detection of both fraudulent trans-
actions and cards and ii) an experimental assessment of
their performances on the basis of a massive set of 12
million transactions and in terms of real-life criteria (defined
by our industrial partner, Worldline, a leader company in
transactional services). The outcome is an original analysis
of the exploitation/exploration trade-off in the context of a
real-world FDS.

The work is organized as follows. Section 2 presents the
related state-of-the-art. Section 3 provides an overview of
our Fraud Detection System. Section 4 discusses a number
of AL strategies (as well as possible variants) for dealing
with streaming credit card transactions. Finally, Section 5
presents an extensive experimental session based on a real
stream of transactions.

2. Related Work

The application of active learning to the specific charac-
teristics of fraud detection has only been partially addressed
in the research literature. Fan et al. carried out an empirical

analysis on a fraud detection dataset [13] to assess AL
approach in presence of concept drift. They focused on the
adaptation ability of the AL strategy, but did not address the
detection accuracy. Pichara et al. [14] tested a large scale
anomaly detection approach in a synthetic dataset emulating
the fraud process. Their AL schema was able to detect the
whole subset of frauds using a number of queries smaller
than a bayesian network detection approach. Multiple tests
were repeated using different data-noise levels, and their
AL consistently outperformed the other technique. The fact
that they have used a synthetic dataset, is a limitation to
their results. It is very difficult to create a fair synthetic
dataset, since frauds are very diverse and they evolve in an
unpredictable way. Van Vlasselaer et al. [15] applied active
inference, a network-based algorithm, to fraud discovery in
social security real data. They found that committee-based
strategies, based on uncertainty, resulted in a slightly bet-
ter classification performance than expert-based strategies.
Nevertheless expert-based strategies are often preferred in
order to obtain unbiased training sets from queries.

The relationship between active learning and streaming
data, notably the sampling bias issue, is discussed in [16].
Authors showed that in stream-based active learning, the es-
timated input-output dependency changes over time and de-
pends on previously queried instances. Since those instances
are typically selected next to the class decision boundary of
the classifier, this may lead to a biased representation of the
underlying data distribution. AL and concept drift is also
addressed in [17], who stressed how concept drift may be
missed in regions far from where AL queries normally take
place (e.g. boundary regions between classes). The authors
showed that techniques based on classical uncertainty sam-
pling favor close concept drift adaptation while techniques
based on random sampling are more effective in dealing
with remote concept drift. Nevertheless, the best performing
techniques can strongly depend on the characteristics of the
data and the size of the query budget.

The integration of AL and semi-supervised learning
technique is discussed in Xie and Xiong [18]. They intro-
duced a Stochastic Semi-supervised Learning (SSSL) pro-
cess to infer labels in case of large imbalanced datasets with
small proportion of labeled points. The approach relies on
the consideration that since the number of unlabeled points
is huge and the minority class is rare, the probability of
making a wrong majority assignment is very low. Conse-
quently they proposed the assignment of the majority class
to random selection of points and adopted it with success
in the context of a data competition.

Finally, an original approach that may be used to deal
with the one-to-many relationships between cards and trans-
actions, is discussed in [10]. They present an AL ap-
proach for multiple-instance problems where instances are
organized into bags. Typical examples of multiple-instance
problems are found in text classification and content-based
image retrieval. In those type of problems a bag is said
to be positive if it includes at least one instance which is
positive, while the bag is negative if no positive instances
are observed in it.



3. The FDS classifier

Let us consider a FDS whose goal is to detect auto-
matically frauds in a stream of transactions. Let x be the
vector coding the transaction (e.g. including features like
the transaction amount, the terminal) and y ∈ {+,−} the
associated label, where + denotes a fraud and − a genuine
transaction. A detection strategy needs a measure of risk
(score) associated to any transaction. In a machine learning
approach this score is typically provided by the estimation
of the a posteriori probability PC(+|x) returned by a clas-
sifier C. We consider a streaming setting where unlabeled
transactions arrive one at a time or in small batches.

The FDS goal is to raise every day a fixed and small
number of k alerts. In our industrial case study k is set to 100
on the basis of cost and work organization considerations.

The issuing of those alerts has two consequences: the
trigger of an investigation and the consequent labeling of
the associated transactions. The outcome of the investigation
determines both the success rate of the FDS and the new
set of labeled transactions.

Section 5 will present two levels of experimental val-
idations: the first will concern the detection of fraudulent
transactions, while the second will focus on fraudulent cards.
In the first experiment, the classifier C is implemented by
a conventional Random Forest, while in the second, we use
a more complex approach (ensemble of classifiers) dictated
by the more challenging nature of the detection tasks. This
approach has been presented in [11], [12] and consists of
the weighted average of two classifiers

PC(+|x) = wAPDt(+|x) + (1− wA)PFt(+|x) (1)

where Dt and Ft stand for Delayed classifier and Feed-
back classifier, respectively, and wA ∈ [0, 1] is a weight
controlling the contribution of the two classifiers. Dt is
implemented as an ensemble of Balanced Random Trees
[19], [20] trained on old transactions for which we can
reasonably consider the class as known. Ft is trained on
recently alerted transactions, for which a Feedback was
returned by investigators. It is therefore alimented by the
active learning component of the fraud detection system.
This Feedback component is very important to address
concept drift.

This architecture is the result of an extensive model se-
lection and assessment procedure which have been discussed
in our previous work [11], [12]. Since the aim of this paper is
to discuss the impact of different AL strategies, we will not
take into consideration alternative classifier architectures.

4. Active learning strategies

The rationale of AL is to select (on the basis of cur-
rent information) unlabeled training samples which, once
labeled, can improve the accuracy. However, there are two
main unknowns concerning the effectiveness of AL in credit
card fraud detection. The first concerns the strong imbal-
ancedness of the class distribution: since the selection of

Algorithm 1 Active Learning process
Require: k . total number of alerts
Require: q . exploration budget
Require: m . SSSL budget
Require: D . initial training set

1: for any new day do
2: C ← learning(D)
3: inTrx← unlabeled set
4: scores← {PC(x), x ∈ inTrx}
5: sel← points with highest risk scores . HRQ
6: if (q > 0) then . EAL
7: Esel← q explorative points
8: sel← {sel, Esel}
9: end if

10: queries← investigator labeling of sel
11: if (m > 0) then . SSSL
12: SSSLset←m points based on a SSSL criterion
13: SSSLset← set label y(SSSLset) = 0
14: queries← {queries, SSSLset}
15: end if
16: D ← {D, queries}
17: end for

adequate queries is the most important step of an AL pro-
cedure, this step should take into account that in such a large
imbalanced problem, selecting majority class points will
inevitably have a negligible impact on accuracy. The second
concerns the definition of accuracy: measures of detection
accuracy are strictly related to the capacity of discovering
frauds, i.e. querying minority class samples. This means that
an AL strategy for fraud detection requires some specific
tuning for being successful.

To illustrate the impact of AL on FDS, we will start
by considering a baseline strategy which simply queries
the highest risk transactions on the basis of the current
classification model. This strategy will be denoted as the
Highest Risk Querying (HRQ). Thereafter, we will introduce
and assess a number of modifications of HRQ according
to several principles. In order to make the comparison
easier we will define each AL strategy as an instance of a
generic AL strategy detailed in Algorithm 1. The Algorithm
requires the specification of three parameters: the budget k
of queries (i.e. maximum number of transaction that can
be investigated per day), the number of q queries defined
for exploration purposes and the number m of unlabeled
transactions that can be set as genuine without investigation
(see 4.3). The entire list of discussed AL strategies is
presented in Table 1.

4.1. Highest Risk Querying

The idea of Highest Risk Querying is simple: given a
classifier C and a budget of queries, HRQ returns the un-
labeled transactions with the highest estimated a posteriori
probability PC(+|xi). Highest Risk Querying (HRQ) is the
most intuitive active learning strategy for our problem if
we consider that the final FDS accuracy depends on the



TABLE 1. SUMMARY OF ACTIVE LEARNING AND SEMI-SUPERVISED STRATEGIES DESCRIBED IN THE PAPER

Id Strategy Type
HRQ Highest Risk Querying Baseline / BL (section 4.1)

R Random Querying
U Uncertainty Querying
M Mix of Random and Uncertainty Querying

Exploratory Active Learning / EAL (section 4.2)

SR Stochastic Semi-supervised Learning (SSSL) on Random points
SU SSSL on Uncertain points
SM SSSL on Random/Uncertain points
SE SSSL on points most likely to be genuine

Stochastic Semi-Supervised Learning / SSSL (section 4.3)

SR-U SSSL on Uncertain points + Random Sampling
SR-R SSSL on Random points + Random Sampling
SR-M SSSL on Random/Uncertain points + Random Sampling

SSSL + EAL (section 4.3)

ROS Random Oversample
SMOTE SMOTE

Oversample (section 4.4)

QFU Querying by Frequent Uncertainty
MF-... Max combining function
SM-... Softmax combining function
LF-... Logarithmic combining function

Multiple Instance Learning (sections 4.5)

amount of minority class querying. Note that in terms of
the pseudocode in Algorithm 1, HRQ is obtained by setting
q = 0 and m = 0.

HRQ is expected to have a positive impact on accuracy
by discovering new instances from the minority class and
improving consequently the balance of the training set.
HRQ has also some drawbacks: since its querying strategy
relies on the classifier accuracy, this selection step could be
inaccurate especially at the very beginning.

4.2. Exploratory Active Learning

Exploratory Active Learning (EAL) strategies modify
HRQ by trading exploitation for exploration. The idea is
to convert a subset of the labeling budget in explorative
queries. The size of the exploration budget is represented
by 0 < q ≤ k in Algorithm 1.

We may consider a number of exploration techniques for
selecting the q exploratory transactions. The simplest one
is random querying (denoted by EAL-R) which consists in
choosing randomly the q query points. This solution can be
sub-optimal since it may query points for which the classifier
is already highly confident about the class.

An alternative is represented by uncertainty querying
(EAL-U) which returns unlabeled data points for which the
current classifier has low confidence [21]. Given a binary
classifier C, the uncertainty querying strategy gives priority
to the transactions xi for which PC(+|xi) ≈ 0.5.

Žliobaitė et al. [17] proposed the mix of the two tech-
niques, uncertainty querying and randomization, to tackle
remote concept drift (Section 2). The technique (denoted
by EAL-M) consists in querying by uncertainty most of the
points and in querying random points from time to time.

4.3. Stochastic Semi-supervised Learning

The SSSL strategy has been introduced by Xie and
Xiong [18] to infer labels in case of highly imbalanced
datasets with a large number of unlabeled points. The strat-
egy relies on a simple consideration: since the ratio between
the number of frauds and the total number of transactions
is very small, the probability of randomly selecting a fraud
is very low.

The resulting AL learning schema is made of four steps:
1) Selection: the current model is used to annotate all

unlabeled transactions with an estimated risk;
2) Querying: the highest risk transactions are labeled by

the investigators;
3) Majority assumption: a number of transactions are la-

beled as genuine by majority assumption; in this paper
we explore a number of criteria to attribute the majority
class: pure random attribution (SR), uncertainty (SU),
mix of randomness and uncertainty (SM) and low
predicted risk (SE).

4) Training: the labeled data points, obtained by the previ-
ous steps, are used to train/update a supervised model.

It appears that this strategy differs in terms of the usage of
the current model C: the predicted risk is not only used to
alert and trigger the investigation but also to label (without
investigation) a number of low risk transactions.

In order to illustrate the reliability of the majority as-
sumption, we report in Figure 4.5.1 the distribution of the
scores PC(+|xi) over 15 days. In particular the histograms
(a), (b) and (c) refer to the score distribution for all trans-
actions, genuine transactions and fraudulent transactions,
respectively. The plot (d) represents the proportion of fraud-
ulent and genuine transactions for a given score in the range
[0, 1]. Note that, though the a priori proportion of fraudulent
cards in the dataset is 0.13%, it becomes 23.33% for scores



higher than 0.95 and 61.90% for scores beyond 0.99. Also,
in the area of maximal uncertainty for C (e.g between 0.49
and 0.51), we find only 0.35% of frauds.

On the basis of those considerations, it is possible to
define a number of Stochastic Semi-Supervised strategies:
• SR: no exploration budget (q = 0) and attribution of

the majority class to m > 0 random transactions;
• SU: no exploration budget (q = 0) and attribution of

the majority class to the m > 0 most uncertain points;
• SM: no exploration budget (q = 0) and attribution of

the majority class to the 0.7×m most uncertain points
and to 0.3×m random points;

• SE: no exploration budget (q = 0) and attribution of
the majority class to the m > 0 lowest risk points;

Additional variants can be created by simply allowing
an exploration budget (q > 0). The SR-U, SR-R and SR-M
strategies are hybrid strategies by combining an exploration
strategy (e.g. U in SR-U) and a SSSL strategy (e.g. SR in
SR-U).

4.4. Oversampling

It is worth noting that a side-effect of the adoption of
SSSL (Section 4.3) is to add a number of majority class
samples to the training set. This goal is typically achieved
by oversampling techniques, with the main difference that
here the target class is the majority class and not the
minority one. In order to assess how SSSL situates with
respect to conventional oversampling, we also consider a
comparison with the two main oversampling techniques:
Random Oversample (ROS) [22] and SMOTE [23]. ROS
consists in duplicating some random instances from the class
to be oversampled until a given sample size is reached.
SMOTE creates artificial instances from the target class in
the following manner: once the k nearest neighbors from the
same class have been identified, new artificial transactions
are generated moving along the line segment joining the
original instance and its k neighbors.

4.5. Multiple Instance Learning

This section deals with another specificity of the credit
card fraud detection problem: the observations take place at
the level of transactions but what is relevant for the company
is the detection at the card level, since the investigation is
performed at the card level and not at the transaction level.

From an AL perspective, since multiple transactions map
to the same card, we could select query points by taking
advantage of such one-to-many relationship.

4.5.1. Querying by Frequent Uncertainty. The rationale
of Querying by Frequent Uncertainty (QFU) boils down to
query those cards which are mapped to the largest number of
uncertain transactions. We associate to each card c a counter
representing how many of its associated transactions xi ∈ c
are uncertain, i.e. have a score PCt(+|xi) ∈ [0.5−v, 0.5+v]
where v is set by the user. The counters are updated in
real-time and the AL selection returns the k cards with the
highest counters.
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Figure 1. Distribution of the scores obtained by PAt (+|xi) in a range
of 15 days involving 2.4 millions of cards for: (a) all the transactions (b)
only genuine transactions and (c) only fraudulent transactions. In (d) the
proportion of genuine and fraudulent transactions is plotted while changing
the score obtained by PAt (+|xi).

4.5.2. Combining Function. A more advanced strategy to
deal with card detection is inspired by [10]. A combining
function can be used to aggregate all the posterior probabil-
ities pci = PC(+|xi) of the transactions xi ∈ c and derive
the posterior probability PC(+|c).

The simplest combining function is the max function
(denoted MF), which returns

PMF
C (+|c) = max

xi∈c
pci (2)

Alternatively, authors in [10] propose the softmax com-
bining function:

PSMC (+|c) =
∑
xi
pcie

αpci∑
xi
eαp

c
i

(3)

where α is a constant that determines the extent to which
softmax approximates a max function.

In order to i) increase the sensitivity of the card risk to
high risk transactions and ii) reduce its sensitivity to low risk



TABLE 2. SCORING OF TRANSACTIONS

Rank Card Id Trx Id pci
1 A A7 0.90
2 B B3 0.88
3 B B5 0.87
4 A A2 0.83
... ... ... ...

TABLE 3. SCORING OF CARDS ON THE BASIS OF TRANSACTIONS FROM
TABLE 2 WITH THREE COMBINING FUNCTIONS

Card Id max(pci ) softmax(pci ) logarithmic (pci )
A 0.90 0.87 34.21
B 0.88 0.88 34.55
... ... ... ...

TABLE 4. ADDITIONAL TRANSACTION

Rank Card Id Trx Id pci
20000 B B6 0.20

TABLE 5. SCORING OF CARDS ON THE BASIS OF TRANSACTION FROM
TABLES 2 AND 4 WITH THREE COMBINING FUNCTIONS

Card Id max(pci ) softmax(pci ) logarithmic (pci )
A 0.90 0.87 34.21
B 0.88 0.74 34.55
... ... ... ...

transactions, we propose a logarithmic combining function
returning the score

∑
xi∈c
− 1

log sci
(4)

where sci =

{
pci − ε if pci > 0.5

ε otherwise.
and ε is a very small

number.
Table 3 illustrates the scores associated to the transac-

tions of Table 2 for the three combining functions presented
above. It appears that, unlike the max function, the other two
functions are able to take into account the impact of multiple
risky transactions on the overall risk of a card. In other terms
two high risk transactions weight more than a simple one
with a marginal higher risk. However the softmax and the
logarithmic functions differ in the importance they give to
low risk transactions. Suppose we add a low risk transaction
(Table 4) for card “B” to the set of transactions of Table 2.
Table 5 shows that the sensitivity of the card risk to such
additional transaction is much larger in the softmax than in
the logarithmic case. The counter-intuitive consequence is
that according to the softmax function the card “B” becomes
now less risky than the card “A”.

5. Experiments

This section relies on a large dataset of 12 million credit
card transactions provided by our industrial partner World-
line. In this realistic case-study, only a very small number
(k = 100) of cards per day can be queried, amounting to
roughly 0.2% of labeled points. The dataset covers 60 days,
each day including roughly 200K transactions.

Two sets of experiments are performed: the first mea-
sures the detection accuracy at the level of the transactions,
while the second measures the detection accuracy at the
card level. In the first study, for the sake of simplicity, the
classification model C is a conventional random forest model
RF while a more realistic model A (discussed in [11] and
in Section 3) is used for the cards. Since the randomization
process in RF and A may induce variability in the accuracy
assessment, we present the results of twenty repetitions of
the streaming.

All the AL strategies are compared in identical situations
and initialized with the same random and balanced set
(initial training set D presented in algorithm 1). The results
are presented as box-plots summarizing the fraud detection
performance over the 60 days. In particular we considered
the following accuracy measures: Top100 Precision, Area
Under the Precision-Recall Curve and Area Under the Re-
ceiver Operator Characteristic Curve. In all the plots, the
dark boxes are used to denote the most accurate AL strategy
as well as the ones which do not differ significantly from
it (paired Wilcoxon signed rank test with 5% significance
level).

Note that the expected precision over the Top100 alerts is
expected to be larger for RF than A since multiple positive
alerts for the same card will be accounted as several true
positives in the transaction case but as a single success in
the card case. We made all the code available on Github1.

5.1. Transaction-based Fraud Detection

In Figure 2, we report the detection accuracy of the AL
techniques discussed in Section 4. A horizontal line is added
in order to make the comparison with the baseline strategy
HRQ easier. The experiments are performed with k = 100,
q = 5 and m = 1000. These hyperparameters have been
set by trial-and-error and are compatible with the kind of
exploration effort that our industrial partner could ask to its
investigators.

It appears that exploratory AL alone is not able to out-
perform the standard HRQ strategy. Instead, the best results
are obtained by combining SSSL with either randomization
(SR) or uncertainty sampling (SR-U). In particular, the SR
strategy leads to an improvement in precision of 5.84%,
while SR-U leads to an improvement of 5.15%. Similar
improvement are observed for the AU-PRC (Figure 2b),
while a wider range of techniques perform better in terms
of AU-ROC curve (Figure 2c).

1. https://github.com/fabriziocarcillo/StreamingActiveLearningStrategies
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Figure 2. Transaction-based case study. Box-plots summarize the accuracy measures obtained over 60 days and 20 trials. Black points indicate the mean
value for each box and the horizontal line indicates the mean for the baseline HRQ. Dark boxes indicate the best strategy and those which are not
statistically different (paired Wilcoxon test). The extended names for the strategies listed on the horizontal axes can be found in Table 1. Figure (a):
Top100 precision. Figure (b): Area Under the Precision-Recall Curve. Figure (c): Area Under the Receiver Operator Characteristic Curve.
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Figure 3. Transaction-based case study. Figure (a): Top100 precision. Figure (b) Area Under the Precision-Recall Curve. Figure (c) the Area Under the
Receiver Operator Characteristic Curve.

The most efficient combination in our setting is therefore
obtained by a combination of stochastic semi supervised
approach with the standard HRQ strategy for active learning.
We also have compared the semi-supervised technique SR
with the standard Random Oversample and SMOTE over-
sampling techniques. As shown in Figure 3, SR appears to

be better in terms of Precision, AU-PRC and AU-ROC. ROS
and SMOTE outperform HRQ only in terms of AU-ROC.

5.2. Card-based Fraud Detection

In this second case study, we retain the most promising
techniques form the transaction assessment (namely, SR and
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Figure 4. Card-based case study. Figure (a): Top100 Precision. Figure (b) Area Under the Precision-Recall Curve. Figure (c) Area Under the Receiver
Operator Characteristic Curve.

SR-U), and we compare them with the Multiple Instance
Learning strategies described in Section 4.5.1 (v = 0.05)
and 4.5.2 (ε = 1e − 3). Figure 4 summarizes the results
for the card detection study, using Top100 Card Precision,
AU-PRC and AU-ROC as accuracy metrics.

Using the Top100 precision as the performance met-
ric, the best results are obtained using stochastic semi-
supervised with random labeling (SR) when using the max
combining function (MF). The strategy also performs well in
terms of AU-ROC, but is outperformed (by a small margin)
by the logarithmic combining function when using AU-PR
as the performance metric.

Similarly to the results obtained at the transaction level,
the best strategies are those combining the baseline High
Risk Querying with stochastic semi-supervised with random
labeling (SR) or uncertainty labeling (SU). The addition of
an exploratory part (QFU, or SR-U strategies) did not allow
to improve the detection accuracy. The performances are
even slightly decreased in terms of Top100 precision for
SR-U strategies.

Finally, the results show that the combining function
plays an important role. While the max and logarithmic
performed best overall, the softmax clearly hampered the
fraud detection accuracy.

To conclude, stochastic semi-supervised labeling (SR
and SU) combined with HRQ remained the best strategies,
confirming the results obtained at the transaction level. Re-
garding combining functions, while the logarithmic function
provided the best performances in terms of AU-ROC, they
were however significantly outperformed by max in terms
of Top100 precision. Overall, the max combining function
was observed to provide the most stable improvements
throughout the range of explored performance metrics.

6. Conclusion

This paper investigated the combination of semi-
supervised and active learning techniques in the context
of streaming fraud detection. Using a real-world dataset of
several millions of transactions over sixty days, we provided
an extensive analysis and comparison of different strategies,
involving standard active learning, exploratory active learn-
ing, semi-supervised learning and combining functions, and
we made the code available on Github.

Our results show that the baseline active learning for
fraud detection, the Highest Risk Querying, can be no-
ticeably improved by combining it with Stochastic Semi-
supervised Learning, thereby allowing to increase the fraud
detection accuracy by up to five percent. Exploratory active
learning techniques were not observed to improve the fraud
detection task, which we attribute to the highly imbalanced
nature of the data and the small exploration budget that can
be reasonably allocated in a fraud detection system.

Last, our results on combining functions for bags of
transactions showed that the baseline strategy, implemented
with the max strategy, was the most stable across different
accuracy metrics, but that alternative functions could be
worth considering.

Future work will aim at further investigating Stochastic
Semi-supervised Learning strategies and combining func-
tions. In particular, two promising research axes are to better
characterize the ratio of unlabeled transactions that can be
labeled in a semi-supervised way, and the use combining
functions as part of the semi-supervised sampling strategies.
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