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Abstract

The problem of selecting the best among several alternatives in a stochastic context has been
the object of research in several domains: stochastic optimization, discrete-event stochastic
simulation, experimental design. A particular instance of this problem is of particular relevance
in machine learning where the search of the model which could best represent a finite set of
data asks for comparing several alternatives on the basis of a finite set of noisy data.

This paper aims to bridge a gap between these different communities by comparing ex-
perimentally the effectiveness of techniques proposed in the simulation and in the stochastic
dynamic programming community in performing a model selection task. In particular, we will
consider here a model selection task in regression where the alternatives are represented by a
finite set of K-nearest neighbors models with different values of the structural parameter K.
The techniques we compare are i) a two-stage selection technique proposed in the stochastic
simulation community, ii) a stochastic dynamic programming approach conceived to address
the multi-armed bandit problem, iii) a racing method, iv) a greedy approach, v) a round-search
technique.

1 Introduction

A common practice in machine learning consists in adopting cross-validation, and most specifically
its leave-one-out version, to assess different models (e.g. a neural network vs. a support vector
machine or two RBFs with a different number of basis functions) and to select the best one. Leave-
one-out cross-validation is known to be an almost unbiased estimator of the generalisation error [5].
However, for a dataset of N examples and a number S of alternative models to be assessed, this
technique asks to carry out N × S parametric identifications and N × S predictions. This means
that, when S or N is very large and/or when the time constraints are tight, this technique may
require too much computation to be affordable.

In this context, it is crucial to study techniques that, once a restricted number of cross-validation
assessments is allowed, be able to exploit the fixed budget of possible estimations in an optimal way
in order to detect the best structure among a set of alternatives. The issue here is that, given a
set of S alternative model structures and their relative assessments based on cross-validation, there
is always a non zero probability that the ranking returned by a cross-validation be not compatible
with the unkwnown true ranking of their generalization accuracies. An interesting answer to this
problem may come from two disciplines which, together with machine learning, focuses on the issue
of selecting the best system among a large number of alternatives on the basis of a finite number of
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noisy samples. This is the case of discrete-event stochastic simulation [9] and stochastic dynamic
programming [2].

In stochastic simulation a relevant issue is how to develop procedures that can efficiently se-
lect the best among a set of competing system designs, where best is defined by the maximum
or minimum expected simulation output. A well known procedure is the ranking and selection
procedure (R&S) first proposed in [6]. This is a two-stage procedure for selecting the best design
or a design which is very close to the best one. In the first stage, all the designs are assessed with
a fixed number of replications. Based on the results of the first stage, the second one determines
the number of additional replications required to attain a specified confidence in the selection.

Stochastic dynamic programming is another discipline which focuses on the problem of optimal
choice in a stochastic context. A well-known example is the k-armed bandit problem where the goal
is to find the strategy or the sequential design that maximises the total expected sum of outcomes
coming from k stochastic processes. An optimal and tractable solution to this problem in the
normal and independent case relies on the adoption of the dynamic allocation indices (also known
as Gittins indices [7]), which depend on the number of times that the process has been sampled and
the resulting outcome. If we intepret the k stochastic processes as the alternative model structures
to be assessed and their outcome as their estimated generalization error, it appears evident the
importance of a bandit process strategy when the selection of the best model on the basis of
a reduced number of assessments is at stake. The bandit interpretation of the model selection
problem raises the well known exploration-exploitation issue where the challenge is how to trade
off leave-one-out assessments that will help knowing more about the different alternatives versus
assessments intended to improve the accuracy of the model structure currently observed as the
best.

This paper advocates the need to import the above mentioned techniques in the machine learning
arena in order to assess their capacity to deal with problems characterized by a finite set of noisy
data and where the goal is to search for the model with the best generalization capability. If at our
knowledge, no application of simulation optimization techniques to machine learning tasks exists,
the closest research work in terms of adoption of the k-armed bandit algorithm for a learning task
is the paper of Schnedier and Moore where the bandit algorithm was used in a context of active
learning for experimental design.

The two main contributions of the paper to this new research perspective are: a reformulation
of these techniques in the machine learning formalism and an experimental evaluation of these
techniques in a regression model selection problem. In particular, we consider here a set of S
competing K-Nearest-Neighbours (KNN) models, characterized by different values of K. The KNN
models are local models. When a prediction is asked on an input query point q, the KNN model
searches the K nearest neighbours of q in the learning set DN and returns as output the average
of the K nearest neighbours.

Throughout all the paper we assume a fixed budget made of L leave-one-out train and test
assessments which is made avaialble to all the techniques in order to select the best model structure
among a set of S alternatives. The experimental session will then evaluate the different strategies
on the basis of their ability of sequentially choosing the next candidate to be assessed, by taking
into account the total constrained number of estimations and the need of returning at the end the
structure with the lowest generalization error.

In order to build up a reliable benchmark, the simulation R&S technique and the bandit strat-
egy [7] are compared on a set of 26 regression datasets to three yardstick search strategies : (i)
a round-search [10] approach where the budget of L assessments is uniformly shared by all the
competing models, (ii) a greedy-search strategy [10] which sequentially spends the budget on the
most promising model structure on the basis of the previous assessments (iii) a racing strategy for
model selection, proposed first by Maron and Moore [12, 13] and developed furtherly in [3, 4].

2 The model selection strategies

Consider a supervised regression problem where the training set DN = {zi} = {〈x1, y1〉, 〈x2, y2〉,
. . . , 〈xN , yN 〉} is made of N pairs zi = 〈xi, yi〉 ∈ X × Y i.i.d. distributed according to the joint
distribution P (〈X, y〉) = P (y|X)P (X). Let us define a learning machine by the following compo-
nents: (i) a class Λ of hypothesis functions h(·, α), α ∈ Λ, which can be represented as a nested



sequence of model structures Λ1 ⊂ Λ2 ⊂ . . . ⊂ Λs ⊂ . . . ⊂ ΛS , (ii) a quadratic cost function
C(y, h) = (y − h)2, (iii) an algorithm of parametric identification that for a given structure Λs

and a given training set DN returns a hypothesis function h(·, αs
DN

) with αs
DN

∈ Λs such that
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≤
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selection consists in finding the class of hypothesis which is optimal in terms of generalization
accuracy. In formal terms this corresponds to search for the class Λs∗ such that
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where the mean integrated square error MISE(s) is a quantitative measure of the generalization
accuracy of the class s of models. Unfortunately, in practice, the quantity MISE(s) is not observed
directly but can only be estimated, for instance by cross-validation.

The common model selection practice to minimize the generalisation error MISE consists in: (i)

computing an estimate M̂ISE(s) of the unknown MISE(s) on the basis of the whole dataset DN ,

(ii) implementing a search procedure to search for the structure index s that minimizes M̂ISEs.
In this paper, we focus on a model selection task which has to be accomplished on the basis of an

overall budget of L Monte-Carlo leave-one-out (l-o-o) cross-validation assessments. The resulting
procedure is then a sequence of L steps (or trials) where each step consists in:

1. choosing a model among the S alternatives according to a specific strategy,

2. selecting randomly a sample zi = 〈xi, yi〉 from the learning set DN ,

3. performing the parametric identification step (e.g. by empirical risk minimization) on the
dataset D(i), obtained by removing the sample zi from the learning set DN ,

4. assessing the prediction error of the chosen model e
(i)
i =

(

yi − h(xi, α
s
D(i)

)
)2

.

Each of the strategies presented in the following uses a different sequential policy to choose
the model structure and to allocate the L assessments. Let ls (s = 1, . . . , S) be the number of
assessments allocated to the model structure indexed by s, after l (l = 1, . . . , L) steps. At the

l + 1th step of the procedure, each technique will rely on the S estimations M̂ISE(s, ls) of the
generalisation error performed so far, where

M̂ISE(s, ls) =
1

ls

ls
∑

j=1

(

yi − h
(

xi, αD(i)

))2
(2)

is the estimation of the generalisation error of the model s on the basis of ls l-o-o assessments, and
∑S

s=1 ls = l.
In Sections 2.1 and 2.2 we will discuss how the R&S and the bandit technique, borrowed from

simulation and stochastic dynamic programming respectively, can be applied to a model selection
task. Section 2.3 will rapidly sketch the three reference methods we use to perform the benchmark-
ing session.

2.1 The R&S search

The ranking-and-selection procedure aims to select the best (e.g. without loss of generality the
lowest quantity) among S alternatives by controlling the probability that the selected alternative is
really the best one. Suppose we have S estimations µ̂(s), s = 1, . . . , S of S unknown expected value
µ(s), s = 1, . . . , S. Let µ(sj) be the jth smallest of the µ(s)’s so that µ(s∗) = µ(s1) ≤ µ(s2) ≤
· · · ≤ µ(sS). Suppose we want to select on the basis of the µ̂(s), s = 1, . . . , S, the value s∗ such that
s∗ = arg minµ(s). Given the random nature of the estimators µ(s), we can never be absolutely sure
that we shall make the optimal selection. However, we could accept as correct also some choice s̃
such that |µ(s̃) − µ(s∗)| < δ for a given δ (also known as the indifference zone parameter).

Let us denote by CS (for “correct selection”) the event related to the choice of such a s̃. The
R&S algorithm [6] defines a procedure for ensuring that, for a given δ the probability of having



accomplished the correct selection be greater than a certain value P ∗ (also known as the probability

of correct selection).
Let us now reformulate the problem in the model selection terminology. Given S structures, let

sj be the index of the jth best structure:

MISE(s∗) = MISE(s1) ≤ MISE(s2) ≤ . . . ≤ MISE(sj) ≤ . . . ≤ MISE(sS)

We would like to select the structure Λs1
returning the smallest generalisation error but we are

ready to accept as correct the structure indexed by s̃ where, with probability P ∗, the difference
between MISE(s̃) and MISE(s1) is smaller than δ. P ∗ and δ are two parameters of the method
fixed by the designer.

The statistical procedure for solving this problem involves two stages of sampling on each of
the S alternative structures. In the first-stage sampling, we make N0 ≥ 2 tests on each of the S
structures. The l-o-o error means and variances after the first N0 assessments on the S structures
are:

M̂ISE(s,N0)
(1) =

∑N0

i=1

(

yi − h(xi, α
s
D(i)

)
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where the estimetion of MISE is restricted to a subset of the training set. Then we compute N1(s),
the number of assessments needed to attain the given accuracy:

N1(s) = max
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where ⌈x⌉ is the smallest integer greater than or equal to x and the value hS
P∗(N0) (dependent on

S, P ∗ and N0) can be obtained from the tables in [9]2. Next we make N1(s) − N0 new tests on
each structure and obtain the second-stage test means:
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where W s
2 = 1−W s

1 . Finally, according to [6], the estimation of the generalisation error of the sth
structure is:

M̂ISE(s) = W s
1 · M̂ISE(s,N0)

(1) + W s
2 · M̂ISE(s,N1(s) − N0)

(2)

Note that although the method assumes that the leave-one-out errors are normally distributed,
we need to assume that neither the values of the variance are known, nor they are the same for all s.
At the same time, the main limitation of the technique is that it considers complete independence
both for observations within individual alternatives and across alternatives, that does not evidently
hold in a cross-validation case. A blocking version of the algorithm that removes this assumption
can be found in [1].

For our experimental session we set P ∗ to 0.9 and δ to the average of the differences between

the quantities M̂ISE
(1)

of each pair of structures after the first stage.

2For a more extended description of the meaning of h we refer the reader to [6, 1]



2.2 The bandit-search

The bandit-search is a method for model selection inspired to the solution of the k-armed bandit

problems based on the adoption of the Gittins’ indices [7]. In the k-armed bandit problem setting,
we consider a casino player who has to find the optimal strategy to play with a random k-armed
machine. When one arm is pulled, the bandit machine generates a random reward based on a
normal distribution specific to that arm with unknown mean and variance. The player must find
the sequence of actions on the bandit machines which maximizes the rewards of the machines.

An optimal sequence strategy must then solve the exploration versus exploitation trade-off. Since
the parameters of the normal distribution are unknown, the strategy would require a maximum of
actions on each arm (exploration) in order to improve the estimation of its reward. On the other
hand, since the goal is to maximize the rewards of the machines, the strategy should privilege the
actions on the best observed arm (exploitation). Gittins, in his book [7], computes a set of indices
to solve this allocation trade-off problem in an optimal manner.

Back to our model selection problem, the arms can be considered as the alternative models and
the expected rewards as the expected generalisation error of each of them. The goal here is not
to maximize the reward but to minimize the generalization error on the basis of the L assessment
trials made available.

The indices of Gittins return the optimal solution in the case of an infinite temporal discount

factor problem. Our model selection problem is not time infinite, but is based on a finite number
of trials. To adapt this approach to our setting, we have recourse to the solution proposed in [14].
If a system with a discount factor γ (0 < γ < 1) receives, at every step, a reward R, then the total
reward will be : R + γR + γ2R + γ3R + . . . = R

∑∞
i=0 γi = R/(1− γ). Thus its total reward will be

the same as if there is no infinite temporal and it stops after 1/(1−γ) loops. This given a heuristic
for converting the number of loops in an effective γ : γ = L−1

L
.

Our implementation of the bandit-search method begins by performing in a round-robin fashion
L/2 assessments overall. Then, the method carries out the remaining (L − L/2) steps by at each
step (i) computing the Gittins indices for all the model structures, (ii) allocating the assessment to
the structure with the lowest Gittins index. Finally, when the budget runs out, the bandit-search

method returns the structure with the lowest generalisation error. The values of the Gittins indices

at the lth step are given by

M̂ISE(s, ls) − σ ̂MISE(s,ls)
v(l, γ) (6)

where M̂ISE(s, ls) and σ ̂MISE(s,ls)
are respectively the average mean and standard deviation of

the l-o-o errors, and the value v(l, γ) is obtained by the tables of [7]. Note that a simple linear
interpolation is used to estimate the values of v(l, γ) not included in the tables provided by the
Gittins’ book.

2.3 The yardstick techniques

We will consider three yardstick techniques to benchmark the quality of the methods discussed in
the two previous sections:

Round-search algorithm: this simple algoritmh allocates the l-o-o assessments in a round fash-
ion [10]. This means that at the lth step it assesses the structure of index s = ((l − 1)
mod (S)) + 1.

Greedy-search algorithm: after an initial assessment of all the S structures, this algorithm
selects at the lth (l = s + 1, . . . , L) step always the current best structure according to the

observed M̂ISE(s, ls) [10].

F-race-search algorithm: The idea of racing consists in assessing a large number of models by
performing cross-validation only on a reduced test set. On the basis of well-known statistical
results, it is possible to show that families of good feature subsets can be rapidly found by
quickly discarding the bad subsets and concentrating the computational effort on the better
ones. This model selection technique was called the Hoeffding race by Maron and Moore [11],
with reference to Hoeffding’s formula which puts a bound on the accuracy of a sampled mean
of ls observations as an estimator of the expected value. Let Λ∗ be a set with S structures



Name ABALONE AILERONS BANK-32FH BANK-32FM BANK-32NH

N 4177 10000 8192 8192 8192

n 10 40 32 32 32

Name BANK-32NM BANK-8FH BANK-8FM BANK-8NH BANK-8NM

N 8192 8192 8192 8192 8192

n 32 8 8 8 8

Name BUPA COVTYPE ELEVATORS HOUSING KIN32FH

N 345 10000 10000 506 8192

n 6 54 18 13 32

Name KIN32FM KIN32NH KIN32NM KIN8FH KIN8FM

N 8192 8192 8192 8192 8192

n 32 32 32 8 8

Name KIN8NH KIN8NM MPG OZONE POL

N 8192 8192 392 330 10000

n 8 8 7 8 48

Name STOCK

N 950

n 9

Table 1: The datasets use to compare the search methods. N is the number of samples and n is
the number of covariates.

M1 vs M2 num. victories M1 num. victories M2 num. equalities

R&S vs bandit 5 11 10

R&S vs F-race 9 9 8

R&S vs round 5 10 11

R&S vs greedy 5 9 12

bandit vs F-race 8 2 16

bandit vs round 5 3 18

bandit vs greedy 9 6 11

F-race vs round 5 8 13

F-race vs greedy 6 9 11

round vs greedy 5 4 17

Table 2: Comparison of the number of victories (paired t-test with confidence = 90% ) for each
couple of search methods where the R&S-search defines the number L. The first colomn is the
number of victories for the first search method, the second column is the number of victories of the
second search method and the last column is the number of equalities between the two methods.

of model. To find the best index of structure in [1, . . . , S], the race-search [11] tests all the
structures in parallel (it makes a race). At each loop of the race-search, when a structure
is significantly worse than the current best structure, this structure is removed of the race
and the method can focus the computational power to distinguish the best structure. In
this paper, we focus on an enhanced version of the racing algorithm, the F-Race, introduced
by [3] for comparing metaheuristics for combinatorial optimization problems and applied to
feature selection problems in [4]. In the experimental session we use the implemented version
of F-Race made available by Mauro Birattari in the R-package race

3.

3 The experimental results

This section compares the two techniques discussed in Section 2.1 and 2.2 respectively, with the
three yardstick methods sketched in Section 2.3. The experimental session uses 26 well-known
regression datasets reported in table 1. For the purpose of the experiments, the datasets are
randomly split in two parts; a training set (1/3 of the samples) and a test set (2/3 of the samples).
The comparative assessment is performed by computing a set of paired t-test (confidence 90%) on

3http://cran.r-project.org/src/contrib/Descriptions/race.html



L = 300 L = 400 L = 500 L = 600

bandit vs F-race 13 8 5 10 9 7 11 5 10 8 5 13

bandit vs round 14 5 7 6 6 14 8 8 10 9 7 10

bandit vs greedy 9 7 10 7 6 13 10 6 10 7 5 14

F-race vs round 11 10 5 8 6 12 5 12 9 8 6 12

F-race vs greedy 7 11 8 9 6 11 8 13 5 7 9 10

round vs greedy 4 11 11 7 7 12 8 6 12 7 9 10

L = 900 L = 1200

bandit vs F-race 7 8 11 7 10 9

bandit vs round 10 5 11 8 5 13

bandit vs greedy 7 5 14 10 6 10

F-race vs round 12 4 10 9 4 13

F-race vs greedy 9 5 12 8 6 12

round vs greedy 4 8 14 5 8 13

Table 3: Comparison of the number of victories (paired t-test with confidence = 90% ) for each
couples of search methods with L = {300, 400, 500, 600, 900, 1200}. For each value of L we have
three columns, the first one is the number of victories for the first search method, the second column
is the number of victories of the second search method and the last column is the number of ties
between the two methods.

the vectors of test squared errors. In order to take into account the peculiarities of the R&S method
we need to perform two experiments. In the first one the budget of l-o-o assessments is fixed by the
two-stage R&S procedure. This is the only way to have a fair assessment of the R&S procedure
with respect to the competitors. In this case we assess S = 10 different KNN model structures:
K = {1, 3, 5, 7, 9, 11, 13, 15, 17, 19}. Table 2 reports for all the pairs of considered methods, the
number of times that a method significantly outperforms the others, the number of times that it is
significantly outperformed and the number of ties.

In the second experiment we assess S = 30 different KNN models structures: K = [1, . . . , 30].
Since the R&S algorithm is not taken into account we can range over six prespecified different
L values (L = {300, 400, 500, 600, 900, 1200}). Table 3 reports for all the the pairs of considered
methods, the number of times that a method significantly outperforms the others, the number of
times that it is significantly outperformed and the number of ties. Two are the main results coming
from these preliminary results. The R&S technique does not seems to be competitive neither with
the bandit strategy nor with the simplest assessment strategies. This is probably due to the strong
assumptions made on the independence of the samples. On the other hand good performance of the
bandit strategy is very promising. This is particularly evident in the case of the comparison with
R&S and in the second experiment for the very reduced budget L = 300 cases (that corresponds
on average to 10 l-o-o assessments per model). The superiority of the bandit search becomes less
striking when the number L increases. For example, for L = 1200 the F-race technique seems to
obtain the best accuracy. This is probably due to the fact that the multiple paired statistical tests
used by the racing technique become more effective when the number of l-o-o samples is sufficiently
high. As a general conclusion, it seems that the bandit strategy is more aggressive than racing for
small number of samples and tends to differentiate less when the budget of assessments begins to
become sufficiently high. A possible reason could be that the bandit criteria does not rely on paired
tests as this is the case of F-race.

4 Conclusion

The issue of selecting the best system is of crucial relevance in machine learning but is of equal
importance in other disciplines. This paper aims to present some preliminary results on the useful-
ness of an improved cross-fertilization between different research communities that address similar
topics. Future work will focus on the extension of the model selection task to more complicated set-
tings (e.g. feature selection) and the adoption of enhanced version of the simulation-based and the
bandit algorithms. Interesting techniques to test are the sequential versions of the two-stage R&S
algorithm discussed in [8] and the use of methods that remove the assumption of independence.
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