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Abstract

Billions of dollars of loss are caused every year due to fraudulent credit
card transactions. The design of efficient fraud detection algorithms is key
for reducing these losses, and more and more algorithms rely on advanced
machine learning techniques to assist fraud investigators. The design of fraud
detection algorithms is however particularly challenging due to non station-
ary distribution of the data, highly imbalanced classes distributions and con-
tinuous streams of transactions.

At the same time public data are scarcely available for confidentiality
issues, leaving unanswered many questions about which is the best strategy
to deal with them.

In this paper we provide some answers from the practitioner’s perspective
by focusing on three crucial issues: unbalancedness, non-stationarity and
assessment. The analysis is made possible by a real credit card dataset
provided by our industrial partner.
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1. Introduction

Nowadays, enterprises and public institutions have to face a growing pres-
ence of fraud initiatives and need automatic systems to implement fraud
detection [1]. Automatic systems are essential since it is not always possi-
ble or easy for a human analyst to detect fraudulent patterns in transaction
datasets, often characterized by a large number of samples, many dimen-
sions and online updates. Also, the cardholder is not reliable in reporting
the theft, loss or fraudulent use of a card [2]. Since the number of fraudu-
lent transactions is much smaller than the legitimate ones, the data distri-
bution is unbalanced, i.e. skewed towards non-fraudulent observations. It
is well known that many learning algorithms underperform when used for
unbalanced dataset [3] and methods (e.g. resampling) have been proposed
to improve their performances. Unbalancedness is not the only factor that
determines the difficulty of a classification/detection task. Another influ-
ential factor is the amount of overlapping of the classes of interest due to
limited information that transaction records provide about the nature of the
process [4].

Detection problems are typically addressed in two different ways. In the
static learning setting, a detection model is periodically relearnt from scratch
(e.g. once a year or month). In the online learning setting, the detection
model is updated as soon as new data arrives. Though this strategy is the
most adequate to deal with issues of non stationarity (e.g. due to the evo-
lution of the spending behavior of the regular card holder or the fraudster),
little attention has been devoted in the literature to the unbalanced problem
in changing environment.

Another problematic issue in credit card detection is the scarcity of avail-
able data due to confidentiality issues that give little chance to the community
to share real datasets and assess existing techniques.

2. Contributions

This paper aims at making an experimental comparison of several state
of the art algorithms and modeling techniques on one real dataset, focusing
in particular on some open questions like: Which machine learning algorithm
should be used? Is it enough to learn a model once a month or it is necessary
to update the model everyday? How many transactions are sufficient to train
the model? Should the data be analyzed in their original unbalanced form?
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If not, which is the best way to rebalance them? Which performance measure
is the most adequate to asses results?

In this paper we address these questions with the aim of assessing their
importance on real data and from a practitioner perspective. These are just
some of potential questions that could raise during the design of a detection
system. We do not claim to be able to give a definite answer to the problem,
but we hope to that our work serves as guideline for other people in the field.
Our goal is to show what worked and what did not in a real case study. In this
paper we give a formalisation of the learning problem in the context of credit
card fraud detection. We present a way to create new features in the datasets
that can trace the card holder spending habits. By doing this it is possible
to present the transactions to the learning algorithm without providing the
card holder identifier. We then argue that traditional classification metrics
are not suited for a detection task and present existing alternative measures.

We propose and compare three approaches for online learning in order
to identify what is important to retain or to forget in a changing and non-
stationary environment. We show the impact of the rebalancing technique on
the final performance when the class distribution is skewed. In doing this we
merge techniques developed for unbalanced static datasets with online learn-
ing strategies. The resulting frameworks are able to deal with unbalanced
and evolving data streams. All the results are obtained by experimenta-
tion on a dataset of real credit card transactions provided by our industrial
partner.

3. State of the art in credit card fraud detection

Credit card fraud detection is one of the most explored domains of fraud
detection [5, 6, 7] and relies on the automatic analysis of recorded trans-
actions to detect fraudulent behavior. Every time a credit card is used,
transaction data, composed of a number of attributes (e.g. credit card iden-
tifier, transaction date, recipient, amount of the transaction), are stored in
the databases of the service provider.

However a single transaction information is typically not sufficient to
detect a fraud occurrence [5] and the analysis has to consider aggregate mea-
sures like total spent per day, transaction number per week or average amount
of a transaction [8].
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3.1. Supervised versus Unsupervised detection

In the fraud detection literature we encounter both supervised techniques
that make use of the class of the transaction (e.g. genuine or fraudulent) and
unsupervised techniques. Supervised methods assume that labels of past
transactions are available and reliable but are often limited to recognize fraud
patterns that have already occurred [9]. On the other hand, unsupervised
methods don’t use the class of transactions and are capable of detecting new
fraudulent behaviours [5]. Clustering based methods [10, 11] form customer
profiles to identify new hidden fraud patterns.

The focus of this paper will be on supervised methods. In the litera-
ture several supervised methods have been applied to fraud detection such
as Neural networks [12], Rule-based methods (BAYES [13], RIPPER [14])
and tree-based algorithms (C4.5 [15] and CART [16]). It is well known how-
ever that an open issue is how to manage unbalanced class sizes since the
legitimate transactions generally far outnumber the fraudulent ones.

3.2. Unbalanced problem

Learning from unbalanced datasets is a difficult task since most learning
systems are not designed to cope with a large difference between the number
of cases belonging to each class [17]. In the literature, traditional methods
for classification with unbalanced datasets rely on sampling techniques to
balance the dataset [3].

In particular we can distinguish between methods that operates at the
data and algorithmic levels [18]. At the data level, balancing techniques are
used as a pre-processing step to rebalance the dataset or to remove the noise
between the two classes, before any algorithm is applied. At the algorithmic
level, the classification algorithms themselves are adapted to deal with the
minority class detection. In this article we focus on data level techniques as
they have the advantage of leaving the algorithms unchanged.

Sampling techniques do not take into consideration any specific informa-
tion in removing or adding observations from one class, yet they are easy to
implement and to understand. Undersampling [19] consists in down-sizing
the majority class by removing observations at random until the dataset is
balanced.

SMOTE [20] over-samples the minority class by generating synthetic mi-
nority examples in the neighborhood of observed ones. The idea is to form
new minority examples by interpolating between examples of the same class.
This has the effect of creating clusters around each minority observation.
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Ensemble methods combine balancing techniques with a classifier to ex-
plore the majority and minority class distribution. EasyEnsemble is claimed
in [21] to be better alternative to undersampling. This method learns differ-
ent aspects of the original majority class in an unsupervised manner. This is
done by creating different balanced training sets by Undersampling, learning
a model for each dataset and then combining all predictions.

3.3. Incremental learning

Static learning is the classical learning setting where the data are pro-
cessed all at once in a single learning batch. Incremental learning instead
interprets data as a continuous stream and processes each new instance “on
arrival” [22]. In this context it is important to preserve the previously ac-
quired knowledge as well as to update it properly in front of new observa-
tions. In incremental learning data arrives in chunks where the underlying
data generation function may change, while static learning deals with a sin-
gle dataset. The problem of learning in the case of unbalanced data has
been widely explored in the static learning setting [3, 19, 20, 21]. Learning
from non-stationary data stream with skewed class distribution is however a
relatively recent domain.

In the incremental setting, when the data distribution changes, it is im-
portant to learn from new observations while retaining existing knowledge
form past observations. Concepts learnt in the past may re-occur in the
future as new concepts may appear in the data stream. This is known as
the stability-plasticity dilemma [23]. A classifier is required to be able to re-
spond to changes in the data distribution, while ensuring that it still retains
relevant past knowledge. Many of the techniques proposed [24, 25, 26] use
ensemble classifiers in order to combine what is learnt from new observations
and the knowledge acquired before. As fraud evolves over time, the learning
framework has to adapt to the new distribution. The classifier should be able
to learn from a new fraud distributions and “forget” outdated knowledge. It
becomes critical then to set the rate of forgetting in order to match the rate
of change in the distribution [27]. The simplest strategy uses a constant for-
getting rate, which boils down to consider a fix window of recent observations
to retrain the model. FLORA approach [28] uses a variable forgetting rate
where the window is shrunk if a change is detected and expanded otherwise.
The evolution of a class concept is called in literature concept drift.

Gao et all [29] proposes to store all previous minority class examples into
the current training data set to make it less unbalanced and then to combine
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the models into an ensemble of classifiers. SERA [30] and REA [31] selectively
accumulate old minority class observations to rebalance the training chunk.
They propose two different methods (Mahalanobis distance and K nearest
neighbours) in order to select the most relevant minority instances to include
in the current chunk from the set of old minority instances.

These methods consist in oversampling the minority class of the current
chunk by retaining old positive observations. Accumulation of previous mi-
nority class examples is of limited volume due to skewed class distribution,
therefore oversampling does not increase a lot the chunk size.

4. Formalization of the learning problem

In this section, we formalize the credit card fraud detection task as a
statistical learning problem. Let Xij be the transaction number j of a card
number i. We assume that the transactions are ordered in time such that
if Xiv occurs before Xiw then v < w. For each transaction some basic in-
formation is available such as amount of the expenditure, the shop where it
was performed, the currency, etc. However these variables do not provide
any information about the normal card usage. The normal behaviour of a
card can be measured by using a set of historical transactions from the same
card. For example, we can get an idea of the card holder spending habits by
looking at the average amount spent in different merchant categories (e.g.
restaurant, online shopping, gas station, etc.) in the last 3 months preceding
the transaction. Let Xiλ be a new transaction and let dt (Xiλ) be the corre-
sponding transaction date-time in the dataset. Let T denote the time-frame
of a set of historical transactions for the same card. XH

iλ is then the set of the
historical transactions occurring in the time-frame T before Xiλ such that
XH
iλ = {Xij}, where dt (Xij) 6= dt (Xiλ) and dt(Xiλ) > dt (Xij) ≥ dt (Xiλ)−T .

For instance, with T = 90 days, XH
iλ is the set of transactions for the same

card occurring in the 3 months preceding dt (Xiλ). The card behaviour can
be summarised using classical aggregation methods (e.g. mean, max, min or
count) on the set XH

iλ . This means that it is possible to create new aggregated
variables that can be added to the original transaction variables to include
information of the card. In this way we have included information about the
user behaviour at the transaction level and we can now no longer consider
the card ID. Transactions from card holders with similar spending habits
will share similar aggregate variables. Let {X} be the new set of transac-
tions with aggregated variables. Each transaction Xj is assigned a binary
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status Yj where Yj = 1 when the transaction j is fraudulent and Yj = 0
otherwise. The goal of a detection system is to learn P (Y|X ) and predict

the class of a new transaction ŶN ∈ (0, 1). Note that here the focus is not on
classifying the card holder, but the transaction as fraudulent or legitimate.

Credit card fraud detection has some specificities compared to classical
machine learning problems. For instance, the continuous availability of new
products in the market (like purchase of music on the Internet) changes the
behaviour of the cardholders and consequently the distributions P (X ). At
the same time the evolution of the types of frauds affects the class conditional
probability distribution P (Y|X ). As a result the joint distribution P (X ,Y)
is not stationary: this is is known as concept-drift [32]. Note that Gao [29]
suggests that even when the concept drift is not detected, there is still a
benefit in updating the models.

5. Performance measure

Fraud detection must deal with the following challenges: i) timeliness of
decision (a card should be blocked as soon as it is found victim of fraud,
quick reaction to the appearance of the first can prevent other frauds), ii)
unbalanced class sizes (the number of frauds are relatively small compare
to genuine transactions) and iii) cost structure of the problem (the cost of
a fraud is not easy to define). The cost of a fraud is often assumed to
be equal to the transaction amount [33]. However, frauds of small and big
amounts must be treated with equal importance. A fraudulent activity is
usually tested with a small amount and then, if successful, replicated with
bigger amount. The cost should also include the time taken by the detection
system to react. The shorter is the reaction time, the larger is the number
of frauds that it is possible to prevent. Depending on the fraud risk assigned
by the detection system to the transaction, the following can happens: i)
transaction accepted, ii) transaction refused iii) card blocked. Usually the
card is blocked only in few cases where there is a high risk of fraud (well
known fraudulent patterns with high accuracy, e.g. 99% correct). When a
transaction is refused, the investigators make a phone call to the card holder
to verify if it is the case of a false alert or a real fraud. The cost of a false
alert can then be considered equivalent to the cost of the phone call, which
is negligible compared to the loss that occurs in case of a fraud. However,
when the number of false alerts is too big or the card is blocked by error,
the impossibility to make transactions can translate into big losses for the
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customer. For all these reasons, defining a cost measure is a challenging
problem in credit card detection.

The fraud problem can be seen as a binary classification and detection
problem.

5.1. Classification

In a classification problem an algorithm is assessed on its accuracy to
predict the correct classes of new unseen observations. Let {Y0} be the

set of genuine transactions, {Y1} the set of fraudulent transactions, {Ŷ0}
the set of transactions predicted as genuine and {Ŷ1} the set of transactions
predicted as fraudulent. For a binary classification problem it is conventional
to define a confusion matrix (Table 1).

True Fraud (Y1) True Genuine (Y0)

Predicted Fraud (Ŷ1) TP FP

Predicted Genuine (Ŷ0) FN TN

Table 1: Confusion Matrix

In an unbalanced class problem, it is well-known that quantities like TPR
( TP
TP+FN

), TNR ( TN
FP+TN

) and Accuracy ( TP+TN
TP+FN+FP+TN

) are misleading as-

sessment measures [34]. Balanced Error Rate (0.5× FP
TN+FP

+ 0.5× FN
FN+TP

)
may be inappropriate too because of different costs of misclassification false
negatives and false positives.

A well accepted measure for unbalanced dataset is AUC (area under the
ROC curve) [35]. This metric gives an measure of how much the ROC curve
is close to the point of perfect classification. Hand [36] considers calculation
of the area under del ROC curve as inappropriate, since this translate into
making an average of the misclassification cost of the two classes. An alterna-
tive way of estimating AUC is based on the use of the MannWhitney statistic
and consists in ranking the observations by the fraud probability and measur-
ing the probability that a random minority class example ranks higher than
a random majority class example [37]. By using the rank-based formulation
of AUC we can avoid setting different probability thresholds to generate the
ROC curve and avoid the problem raised by Hand. Let n0 = |Y0| be the
number of genuine transactions, and n1 = |Y1| be the number of fraudulent
transactions. Let gi = p̂0(xi0) be the estimated probability of belonging to
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the genuine class for the ith transaction in {Y0}, for i = 1, ..., n0. Define
fi = p̂0(xi1) similarly for the n1 fraudulent transactions. Then {g1, ..., gn0}
and {f1, ..., fn1} are samples from the g and f distributions. Rank the com-
bined set of values g1, ..., gn0 , f1, ..., fn1 in increasing order and let ρi be the
rank of the ith genuine transaction. There are (ρi− i) fraudulent transactions
with estimated probabilities of belonging to class 0 which are smaller than
that of the ith genuine transaction [38]. Summing over the 0 class, we see
that the total number of pairs of transactions, one from class 0 and one from
class 1, in which the fraudulent transaction has smaller estimated probability
of belonging to class 0 than does the fraudulent transaction, is

n0∑
i=0

(ρi − i) =

n0∑
i=0

ρi −
n0∑
i=0

i = Σ0 − n0(n0 + 1)/2

where Σ0 =
∑n0

i=0 ρi. Since there are n0n1 such pairs of transactions alto-
gether, our estimate of the probability that a randomly chosen fraudulent
transaction has a lower estimated probability of belonging to class 0 than a
randomly chosen genuine transaction is

Â =
Σ0 − n0(n0 + 1)/2

n0n1

Â gives an estimation of AUC that avoids errors introduced by smoothing
procedures in the ROC curve and that is threshold-free [38].

5.2. Detection

The performance of a detection task (like fraud detection) is not neces-
sarily well described in terms of classification [39]. In a detection problem
what matters most is whether the algorithm can rank the few useful items
(e.g. frauds) ahead of the rest. In a scenario with limited resources, fraud
investigators cannot revise all transactions marked as fraudulent from a clas-
sification algorithm. They have to put their effort into investigating the
transactions with the highest risk of fraud, which means that the detection
system is asked to return the transactions ranked by their posteriori fraud
probability. The goal then is not only to predict accurately each class, but
to return a correct rank of the minority classes.

In this context a good detection algorithm should be able to give a high
rank to relevant items (frauds) and low score to non-relevant. Fan et all [39]

9



consider the average precision (AP) as the correct measure for a detection
task. Let π be the number of positive (fraud) case in the original dataset. Out
of the t% top-ranked candidates, suppose h(t) are truly positive (h(t) <= t).
We can then define recall as R(t) = h(t)/π and precision as P (t) = h(t)/t.
Then P (tr) and R(tr) is the precision and recall of the rth ranked observation.
The formula for calculating the average precision is:

AP =
N∑
r=1

P (tr)∆R(tr)

where ∆R(tr) = R(tr)−R(tr−1) and N is the total number of observation
in the dataset. From the definition of R(tr) we have:

∆R(tr) =
h(tr)− h(tr−1)

π
=

{
1
π

if the the rth is fraudulent

0 if the the rth is genuine

An algorithm “A” is superior to an algorithm “B” only if it detects the
frauds before algorithm “B”. The better the rank, the greater the AP. The
optimal algorithm that ranks all the frauds ahead of the legitimates has av-
erage precision of 1.

In detection teams like the one of our industrial partner, each time a
fraud alert is generated by the detection system, it has to be checked by
investigators before proceeding with actions (e.g. customer contact or card
stop). Given the limited number of investigators it is possible to verify only
a limited number of alerts. Therefore it is crucial to have the best ranking
within the maximum number α of alerts that they can investigate. In this
setting it is important to have the highest Precision within the first α alerts.

In the following we will denote as PrecisionRank the Precision within the
α observations with the highest rank.

6. Strategies for incremental learning with unbalanced fraud data

The most conventional way to deal with sequential fraud data is to adopt
a static approach (Figure 1) which creates once in a while a classification
model and uses it as a predictor during a long horizon. Though this approach
reduces the learning effort, its main problem resides in the lack of adaptivity
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Model&

Time&Sta-c&approach&

Fraudulent&transac-ons&of&a&chunk&
Genuine&transac-ons&of&a&chunk&

chunk&t+3&chunk&t+2& chunk&t+4& chunk&t+5& chunk&t+6&chunk&t+1&chunk&t&chunk&tE1&chunk&tE2&

Figure 1: Static approach: a model is trained on K = 3 chunks and used to
predict future chunks.

which makes it insensitive to any change of distribution in the upcoming
chunks.

On the basis of the state-of-the-work described in Section 3.3, it is possible
to conceive two alternative strategies to address both the incremental and
the unbalanced nature of the fraud detection problem.

The first approach, denoted as the updating approach and illustrated in
Figure 2, is inspired to Wang et all [40]. It uses a set of M models and
a number K of chunks to train each model. Note that for M > 1 and
K > 1 the training sets of the M models are overlapping. This approach
adapts to changing environment by forgetting chunks at a constant rate. The
last M models are stored and used in a weighted ensemble of models EM .
Let PrecisionRankm denote the predictive accuracy measured in terms of
PrecisionRank on the last (testing) chunk of the mth model. The ensemble
EM is defined as the linear combination of all the M models hm:

EM =
M∑
m=1

wmhm

where

wm =
PrecisionRankm − PrecisionRankmin
PrecisionRankmax − PrecisionRankmin
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PrecisionRankmin = min
m∈M

(PrecisionRankm)

PrecisionRankmax = max
m∈M

(PrecisionRankm)

Model&tE3&

Model&tE2&

Model&tE1&

Model&t&

Ensemble&

Time&Update&approach&

Fraudulent&transac-ons&of&a&chunk&
Genuine&transac-ons&of&a&chunk&

chunk&tE5& chunk&tE4& chunk&tE3& chunk&tE2& chunk&tE1& chunk&t& chunk&t+1&

Figure 2: Updating approach for K = 3 and M = 4. For each new chunk a
model is trained on the K latest chunks. Single models are used to predict
the following chunk or can be combined into an ensemble.

The second approach denoted as the forgetting genuine approach and
illustrated in Figure 3 is inspired to Gao et all’s work [29]. In order to
mitigate the unbalanced effects, each time a new chunk is available, a model
is learned on the genuine transactions of the previousKgen chunks and all past
fraudulent transactions. Since this approach leads to training sets which grow
in size over the time, a maximum training size is set to avoid overloading.
Once this size is reached older observations are removed in favor of the more
recent ones. An ensemble of models is obtained by combining the last M
models as in the update approach.

Note that in all these approaches (including the static one), a balancing
technique (Section 3.2) can be used to reduce the skewness of the training
set (Figure 4).
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Model&tE3& Model&tE2& Model&tE1& Model&t&

Time&
Update&forge=ng&genuine&approach&

Ensemble&

Fraudulent&transac-ons&of&a&chunk&
Genuine&transac-ons&of&a&chunk&

chunk&tE3& chunk&tE2& chunk&tE1& chunk&t& chunk&t+1&

Figure 3: Forgetting genuine approach: for each new chunk a model is created
by keeping all previous fraudulent transactions and a small set of genuine
transactions from the last 2 chunks (Kgen = 2). Single models are used to
predict the following chunk or can be combined into an ensemble (M = 4).

Model&

Fraudulent&transac-ons&of&a&chunk&
Genuine&transac-ons&of&a&chunk&

Balancing&technique&

Figure 4: A balancing technique is used to reduce the skewness of the training
set before learning a model.
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In Table 2 we have summarised the strengths and weaknesses of the in-
cremental approaches presented. The Static strategy has the advantage of
being fast as the training of the model is done only once, but this does not
return a model that follows the changes in the distribution of the data. The
other two approaches on the contrary can adapt to concept drift. They dif-
fer essentially in the way the minority class is accumulated in the training
chunks. The Forget strategy propagates instances between chunks leading to
bigger training sets and computational burden.

Table 2: Strengths and weaknesses of the incremental approaches

Approach Strengths Weaknesses

Static – Speed – No adaptation to changing
distributions.

Update – No instances propagation
– Adapts to changing distribu-

tion

– Need several chunks for the
minority class

Forget – Accumulates minority in-
stances faster

– Adapts to changing distribu-
tion

– Instances propagation

7. Experimental assessment

In this section we perform an extensive experimental assessment on the
basis of real data (Section 7.1) in order to address common issues that the
practitioner has to solve when facing large credit card fraud datasets (Sec-
tion 7.2).

7.1. Dataset

The credit card fraud dataset was provided by a payment service provider
in Belgium. It contains the logs of a subset of transactions from the first
of February 2012 to the twentieth of May 2013 (details in Table 3). The
dataset was divided in daily chunks and contained e-commerce fraudulent
transactions.

The original variables included the transaction amount, point of sale, cur-
rency, country of the transaction, merchant type and many others. However
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the original variables do not explain card holder behaviour. Aggregated vari-
ables are added to the original ones (see section 4) in order to profile the user
behaviour. For example the transaction amount and the card ID is used to
compute the average expenditure per week and per month of one card, the
difference between the current and previous transaction and many others.
For each transaction and card we took 3 months (H = 90 days) of previ-
ous transactions to compute the aggregated variable. Therefore the weekly
average expenditure for one card is the weekly average of the last 3 months.

Table 3: Fraudulent dataset

Ndays Nvar Ntrx Period
422 45 2202228 1Feb12 - 20May13

This dataset is strongly unbalanced (the percentage of fraudulent trans-
actions is lower than 0.4%) and contains both categorical and continuous
variables. In what follow we will consider that chunks contain sets of daily
transactions, where the average transactions per chunk is 5218.

7.2. Learned lessons

Our experimental analysis allows to provide some answers to the most
common questions of credit card fraud detection. The questions and the
answers based on our experimental findings are detailed below.

7.2.1. Which algorithm and which training size is recommended in case of a
static approach ?

The static approach (described in Section 6) is one of the most com-
monly used by practitioners because of its simplicity and rapidity. However,
open questions remain about which learning algorithm should be used and
the consequent sensitivity of the accuracy to the training size. We tested
three different supervised algorithms: Random Forests (RF), Neural Network
(NNET) and Support Vector Machine (SVM) provided by the R software
[41]. We used R version 3.0.1 with packages randomForest [42], e1071 [43],
unbalanced [44] and MASS [45].

In order to assess the impact of the training set size (in terms of days/chunks)
we carried out the predictions with different windows (K = 30, 60 and 90).
All training sets were rebalanced using undersampling at first (50% fraudu-
lent, 50% genuine).
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All experiments are replicated five times to reduce the variance caused
by the sampling implicit in unbalanced techniques. Figure 5 shows the sum
of the ranks from the Friedman test [46] for each strategy in terms of AP,
AUC and PrecisionRank. For each chunk, we rank the strategies from the
least to the best performing. Then we sum the ranks over all chunks. More
formally, let rs,k ∈ {1, ..., S} be the rank of strategy s on chunk k and S be
the number of strategies to compare. The strategy with the highest accuracy
in k has rs,k = S and the one with the lowest has rs,k = 1. Then the sum of

ranks for the strategy s is defined as
∑K

k=1 rk,s, where K is the total number
of chunks. The higher the sum, the higher is the number of times that one
strategy is superior to the others. The white bars denote models which are
significantly worse than the best (paired t-test based on the ranks of each
chunk).

The strategy names follow a structure built on the following options:

• Algorithm used (RF, SVM, NNET)

• Sampling method (Under, SMOTE, EasyEnsemble)

• Model update frequency (One, Daily, 15days, Weekly)

• Number of models in the ensemble (M)

• Incremental approach (Static, Update, Forget)

• Incremental parameter (K, Kgen)

Then the strategy options are concatenated using the dot as separation point
(e.g. RF.Under.Daily.10M.Update.60K).

In both datasets, Random Forests clearly outperforms its competitors
and, as expected, accuracy is improved by increasing the training size (Figure
5). Because of the significative superiority of Random Forests with respect
to the other algorithms, in what follows we will limit to consider only this
learning algorithm.

7.2.2. Is there an advantage in updating models?

Here we assess the advantage of adopting the update approach described
in Section 6. Figure 6 reports the results for different values of K and M .

The strategies are called daily if a model is built every day, weekly if once
a week or 15days if every 15 days. We compare ensemble strategies (M > 1)
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Figure 5: Comparison of static strategies using sum of ranks in all chunks.
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with models built on single chunks (K = 1) against single models strategies
(M = 1) using several chunks in the training (K > 1).

For all metrics, the best strategy is RF.Under.Daily.5M.Update.90K. It
creates a new model at each chunk using previous 90 days (K = 90) for
training and keeps the last 5 models created (M = 5) for predictions. In the
case of AP however this strategy is not statistically better than the ensemble
approaches ranked as second.

For all metrics, the strategies that use only the current chunk to build a
model (K = 1) are coherently the worst. This confirms the result of previous
analysis showing that a too short window of data (and consequently a very
small fraction of frauds) is insufficient to learn a reliable model.

When comparing the update frequency of the models using the same
number of chunks for training (K = 90), daily update is ranking always better
than weekly and 15days. This confirms the intuition that fraud distribution
is always evolving and therefore it is better to update the models as soon as
possible.

7.2.3. Retaining old genuine transactions together with old frauds is benefi-
cial?

This section assesses the accuracy of the forgetting approach described in
Section 6 whose rationale is to avoid the discard of old fraudulent observa-
tions.

Accumulating old frauds leads to less unbalanced chunks. In order to
avoid having chunks where the accumulated frauds outnumber the genuine
transactions, two options are available: i) forgetting some of the old frauds
ii) accumulating old genuine transactions as well. In the first case when the
accumulated frauds represent 40% of the transaction, new frauds replace old
frauds as in Gao [47]. In the second case we accumulate genuine transactions
from previous Kgen chunks, where Kgen defines the number of chunks used
(see Figure 3).

Figure 7 shows the sum of ranks for different strategies where the genuine
transactions are taken from a different number of days (Kgen). The best
strategy for AP and PrecisionRank uses an ensemble of 5 models for each
chunk (M = 5) and 30 days for genuine transactions (Kgen = 30). The
same strategy ranks third in terms of AUC and is significantly worse than
the best. To create ensembles we use a time-based array of models of fixed
size M , which means that when the number of models available is greater
than M , the most recent in time model replaces the M th model in the array
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Figure 6: Comparison of update strategies using sum of ranks in all chunks.
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removing the oldest model in the ensemble.
In general we see better performances when Kgen increase from 0 to 30

and only in few cases Kgen > 30 leads to significantly better accuracy. Note
that in all our strategies after selecting the observations to include in the
training sets we use undersampling to make sure we have the two classes
equally represented.

7.2.4. Do balancing techniques have an impact on accuracy?

So far we considered exclusively undersampling as balancing technique in
our experiments. In this section we assess the impact of using alternative
methods like SMOTE and EasyEnsemble. Experimental results (Figure 8)
show that they both over-perform undersampling.

In our datasets, the number of frauds is on average 0.4% of all transactions
in the chunk. Undersampling randomly selects a number of genuine trans-
actions equal to the number of frauds, which means removing about 99.6%
of the genuine transactions in the chunk. EasyEnsemble is able to reduce
the variance of undersampling by using several sub-models for each chunk,
while SMOTE creates new artificial fraudulent transactions. In our experi-
ments we used 5 sub-models in EasyEnsemble. For all balancing techniques,
between the three approaches presented in section 6, the static approach is
consistently the worse.

In Figure 9 we compare the previous strategies in terms of average pre-
diction time over all chunks. SMOTE is computationally heavy since it
consists in oversampling, leading to bigger chunk sizes. EasyEnsemble repli-
cates undersampling and learns from several sub-chunks. This gives higher
computational time than undersampling. Between the different incremental
approaches, static has the lowest time as the model is learnt once and no
retrained. Forget strategy has the highest prediction time over all balanc-
ing methods. This is expected since it retains old transactions to deal with
unbalanced chunks.

7.2.5. Overall, which is the best strategy?

The large number of possible alternatives (in terms of learning classifier,
balancing technique and incremental learning strategy) require a joint as-
sessment of several combination in order to come up with a recommended
approach. Figure 10 summaries the best strategies in terms of different met-
rics. The combinations of EasyEnsemble with forgetting emerge as best for
all metrics. SMOTE with update is not significantly worse of the best for
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Figure 7: Comparison of forgetting strategies using sum of ranks in all
chunks.
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AP and PrecisionRank, but it is not ranking well in terms of AUC. The fact
that within the best strategies we see different balancing techniques confirms
that in online learning when the data is unbalanced, the adopted balancing
strategy may play a major role. As expected the static approach ranks low
in Figures 10 as it is not able to adapt to the changing distribution. The for-
getting approach is significantly better than update for EasyEnsemble, while
SMOTE gives better ranking with update.

It is worth notice that strategies which combines more than one model
(M > 1) together with undersampling are not superior to the predictions
with a single model and EasyEnsemble. EasyEnsemble learns from different
samples of the majority class, which means that for each chunk different
concepts of the majority class are learnt.

8. Future work

Future work will focus on the automatic selection of the best unbalanced
technique in the case of online learning. Dal Pozzolo et all [48] recently
proposed to use a F-race [49] algorithm to automatically select the correct
unbalanced strategy for a given dataset. In their work a cross validation is
used to feed the data into the race. A natural extension of this work could be
the use of racing in incremental data where the data fed into the race comes
from new chunks in the stream.

Throughout our paper we used only data driven techniques to deal with
the unbalanced problem. HDDT [50] is a decision tree that uses Hellinger
distance [51] as splitting criteria that is able to deal with skewed distribution.
With HDDT, balancing method are not longer needed before training. The
use of such algorithm could remove the need of positive instances propagation
between chunks to fight the unbalanced problem.

In our work the combination of models in an ensemble is based on the
performance of each model in the testing chunk. Several other methods [52,
53, 54] have been proposed to combine models in presence of concept drift.
In future work it would be interesting to test some of these methods and
compare it to our framework.

In this manuscript we assumed that there is a single concept to learn for
the minority class. However, as frauds are different from each other we could
distinguish several sub-concept within the positive class. Hoes et all [52]
suggest to use Naive Bayes to retain old positive instances that come from
the same sub-concept. REA [31] and SERA [30] proposed by Chen and He
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Figure 10: Comparison of all strategies using sum of ranks in all chunks.
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propagate to the last chunk only minority class that belong to the same
concept using Mahalanobis distance and a k-nearest neighbors algorithm.
Future work should take into consideration the possibility of having several
minority concepts.

9. Conclusion

The need to detect fraudulent patterns in huge amount of data demands
the adoption of automatic methods. The scarcity of public available dataset
in credit card transactions gives little chance to the community to test and
asses the impact of existing techniques on real data. The goal of our work
it to give some guidelines to practitioners on how to tackle the detection
problem.

The paper presents the fraud detection problem and proposes AP, AUC
and PrecisonRank as correct performance measures for a fraud detection
task. Frauds occur rarely compared to the total amount of transactions. As
explained in section 5.1, standard classification metrics such as Accuracy are
not suitable for unbalanced problems. Moreover, the goal of detection is
giving the investigators the transactions with the highest fraud risk. For this
reason we argue that having a good ranking of the transactions by their fraud
probability is more important than having transactions correctly classified.

Credit card fraud detection relies on the analysis of recorded transactions.
However a single transaction information is not considered sufficient to detect
a fraud occurrence [5] and the analysis has to take into consideration the
cardholder behaviour. In this paper we have proposed a way to include
cardholder information into the transaction by computing aggregate variables
on historical transaction of the same card.

As new credit-card transactions keep arriving, the detection system has
to process them as soon as they arrive incrementally and avoid retaining in
memory too many old transactions. Fraud types are in continuous evolution
and detection has to adapt to fraudsters. Once a fraud is well detected, the
fraudster could change his habits and find another way to fraud. Adaptive
schemes are therefore required to deal with non-stationary fraud dynamics
and discover potentially new fraud mechanisms by itself. We compare three
alternative approaches (static, update and forgetting) to learn from unbal-
anced and non-stationary credit card data streams.

Fraud detection is a highly unbalanced problem where the number of gen-
uine transactions far outnumbers the fraudulent ones. In the static learning
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setting a wide range of techniques have been proposed to deal with unbal-
anced dataset. In incremental learning however few attempts have tried to
deal with unbalanced data streams [32, 29, 55]. In these works, the most
common balancing technique consists in undersampling the majority class in
order to reduce the skewness of the of the chunks.

The best technique for unbalanced data may depend on several fac-
tors such as i) data distribution ii) classifier used iii) performance measure
adopted, etc. [48]. In our work we adopted two alternatives to undersam-
pling: SMOTE and EasyEnsemble. In particular we show that they are both
able to return higher accuracies. Our framework can be easily extended to
include other data-level balancing techniques.
The experimental part has shown that in online learning, when the data
is skewed towards one class it is important maintaining previous minority
examples in order to learn a better separation of two classes. Instance prop-
agation from previous chunks has the effect of increasing the minority class
in the current chunk, but it is of limited impact given the small number of
frauds. The update and forgetting approaches presented in section 6 differ
essentially in the way the minority class is oversampled in the current chunk.
We tested several ensemble and single models strategies using different num-
ber of chunks for training. In general we see that models trained on several
chunks have better accuracy than single chunk models. Multi-chunks models
learn on overlapping training sets, when this happens single models strategies
can beat ensembles.

Our framework addresses the problem of non-stationary in data streams
by creating a new model every time a new chunk is available. This approach
has showed better results than updating the models at a lower frequency
(weekly or every 15days). Updating the models is crucial in a non-stationary
environments, this intuition is confirmed by the bad results of the static
approach. In our dataset, overall we saw Random Forest beating Neural
Network and Support Vector Machine. The final best strategy implemented
the forgetting approach together with EasyEnsemble and daily update.
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