
Abstract Global card fraud losses amounted to 16.31 Billion US dollars in 2014 [18].
To recover this huge amount, automated Fraud Detection Systems (FDS) are used to
deny a transaction before it is granted. In this paper, we start from a graph-based FDS
named APATE [28]: this algorithm uses a collective inference algorithm to spread
fraudulent influence through a network by using a limited set of confirmed fraudulent
transactions. We propose several improvements from the network data analysis
literature [16] and semi-supervised learning [9] to this approach. Furthermore, we re-
designed APATE to fit to e-commerce field reality. Those improvements have a high
impact on performance, multiplying Precision@100 by three, both on fraudulent card
and transaction prediction. This new method is assessed on a three-months real-life
e-commerce credit card transactions data set obtained from a large credit card issuer.

1 Introduction
Nowadays, e-commerce becomes more and more important for global trade: sales
of goods and services represented more or less 2,000 billion dollars in 2014 and
it was estimated that on 7,223 millions peoples on earth, 20 % were e-shoppers
[14]. Part of the reasons of this success is easy online credit card transactions and
cross-border purchases. Furthermore, most organizations, companies and government
agencies have adopted e-commerce to increase their productivity or efficiency in
trading products or services [4].
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Of course, e-commerce is used by both legitimate users and fraudsters. The
Association of Certified Fraud Examiners (ACFE) defines fraud as: ”the use of one’s
occupation for personal enrichment through the deliberate misuse or misapplication
of the employing organization’s resources or assets ”[8].

Global card fraud losses amounted to 16.31 Billion US dollar in 2014 and is
forecast to continue to increase [18]. This huge number of losses has increased the
importance of fraud fighting: in a competitive environment, fraud have a serious
business impact if not managed, and prevention (and repression) procedures must be
undertaken.

For those reasons e-commerce and credit card issuers need automated systems
that identify incoming fraudulent transactions or transactions that do not correspond
to a normal behavior. Data mining and machine learning offer various techniques to
find patterns in data; here, the goal is to discriminate between genuine and fraudulent
transactions. Such Fraud Detection Systems (FDS) exist and are similar to detection
approaches in Intrusion Detection System (IDS). FDS use misuse and anomaly based
approaches to detect fraud [15].

However, there are issues and challenges that hinder the development of an ideal
FDS for e-commerce system [11]; such as,

• Concept drift: fraudsters conceive new fraudulent ways/methods over time. Fur-
thermore, normal behavior also varies with time (peak consumption at Christmas
for instance).

• Six-seconds rule [28]: acceptance check must be processed quickly as the algo-
rithm must decide within six seconds if a transaction can be pursued.

• Large amount of data: millions of transactions occur per day whereas have to be
analyzed and acceptance must be granted in seconds.

• Unbalanced data: frauds represents hopefully only less than 1% of transactions
but predicting a pattern is harder with unbalanced dataset.

The presence of those challenges leads to high false alert rate, low detection accuracy
or slow detection (see [1] for more details).

This work focuses on automatically detecting e-commerce fraudulent transactions
using network (or graph) related features. Our work is based on a recent paper [28]
which introduced an automated and field-oriented approach to detect fraudulent
patterns in credit card transactions by applying supervised data mining techniques.
More precisely, this algorithm uses a collective inference algorithm to spread fraud-
ulent influence through a network by using a limited set of confirmed fraudulent
transactions and take a decision based on risk scores of suspiciousness of transactions,
card holder and merchants.

In this paper, several improvements from graph literature and semi-supervised
learning are proposed. The resulting fraud detection method is tested on a three-
months real-life e-commerce credit card transaction data set obtained from a large
credit card issuer in Belgium.

The following questions are addressed:

1. Can we enhance graph-based existing FDS in terms of performance?
2. How can we make FDS as suitable for real application as possible?
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3. Is semi-supervised learning [9] or feedback [11] useful for this Graph-based
FDS?

Our approach takes into account various field/ground realities such as the six-
second rule, concept drift, dealing with large datasets and unbalanced data. It also
has been conceived in accordance with field experts to guarantee its applicability.

The rest of this paper is divided as follows: Section 2 introduces background and
notation. Section 3 reviews related work. Section 4 details the proposed contributions.
Experimental comparisons are presented and analyzed in Section 5. Finally, Section
6 concludes this paper.

2 Background and Notation
This section will first introduce some basic facts about fraud detection, since behavior
of fraudsters has to be taken into account in the development of algorithms designed
to counter them. Then some useful graph notation is reviewed.

2.1 Frauds
There are many fraud detection domains but internet e-commerce presents a chal-
lenging data mining task (see Section 1) because it blurs the boundaries between
fraud detection systems and network intrusion detection systems.

As in many domains, profit-motivated fraudsters interact with the affected business.
[2, 24] describes comprehensively this interaction: the fraudster can be internal or
external to the business, can either commit fraud as a customer (consumer) or as a
supplier (provider), and has different basic profiles. From this description, it comes
out that professional fraudsters (as opposed to occasional ones) modus operandi
changes over time. Therefore, fraud detection system algorithms should also adapt
themselve to new behaviors. This is refered as ”Concept drift”: the constant change
in fraudsters behavior.

2.2 Graphs
Consider a weighted directed graph or network, G, assumed strongly connected with
a set of n nodes V (or vertices) and a set of edges E (or arcs, links) [6, 22]. The
adjacency matrix of the graph, containing non-negative affinities between nodes, is
denoted as A, with elements [A]i j (also written ai j) ≥ 0. The natural random walk
on G is defined in a standard way. In node i, the random walker chooses the next
edge to follow according to reference transition probabilities

pi j =
ai j

n

∑
j′=1

ai j′

(1)



724 Bertrand Lebichot, Fabian Braun, Olivier Caelen and Marco Saerens

representing the probability of jumping from node i to node j ∈ Succ(i), the set of
successor nodes of i. The corresponding transition probability matrix will be denoted
as P. In other words, the random walker chooses to follow an edge with a probability
proportional to the affinity (apart from the sum-to-one normalization), therefore
favoring edges associated to a large affinity. The matrix P, containing the pi j, is
stochastic and is called the reference transition matrix.

3 Related Work
Credit-card Fraud detection received a lot of attention, but the number of publica-
tions available is limited. Indeed, credit card issuers protect data sources and most
algorithms are produced in-house concealing the model’s details [28].

As for any machine learning modeling process, two main approaches can be used:
a supervised and an unsupervised scheme. Supervised learning uses labels (the ob-
served prediction of an instance, here the fraud tag) to build the classification model,
where unsupervised simply extracts clusters of similar data that are then processed.
Common unsupervised techniques are peer group analysis [29] and self-organizing
maps [30] while common supervised techniques are artificial logistic regression,
neural networks (ANN) and random forests, meta-learning, case-based reasoning,
Bayesian belief networks, decision trees, logistic regression, hidden Markov models,
association rules, support vector machines, Bayes minimum risk and genetic algo-
rithms. The reader is advised to consult [12] for more detail about credit card fraud
detection, and [24] for a wider review on fraud detection.

According to [28], APATE was the only one to include network knowledge in
the prediction models for fraud detection: This model first builts a tripartite graph
(see below) and then extracts relevant risk scores for each node. [28] shows that this
information, added to more conventional ones, increases the performances of the
fraud detection system.

In this work, we follows the methodology of APATE [28] (which is described in
this section, to make this paper self-contained), and propose several improvements in
the next section. Other types of graph were also investigated (bipartite,...) but they
did not provide better results and are therefore not presented here.

In particular, APATE starts with a set of time stamped, labeled, transactions. The
goal is, of course, to fit a model to infer future fraudulent/genuine transactions.
Furthermore, for each transaction of this dataset, the card holder (or user) and
merchant (or retailer) is known. APATE thus create a tripartite adjacency matrix Atri

(there are three type of node: transactions, card users and merchants) as follows:

Atri =




0t×t At×c At×m

Ac×t 0c×c 0c×m

Am×t 0m×c 0m×m


 (2)

where At×c = (Ac×t)
T is an adjacency matrix where transactions are linked with

their corresponding card holders , At×m = (Am×t)
T is an adjacency matrix where
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transaction are linked with corresponding merchants and 0···×··· is a correctly sized
matrix full of zeros. From Atri, transition matrix P is derived (see Section 2.2).

A column vector r0 = [rTrx
0 ,rCH

0 ,rMer
0 ]T of length equal to the total number of

transactions (hence the superscript Trx), card holders (CH) and merchants (Mer) is
also created. The vector is full of zeros, except for known fraudulent transactions
where it is equal to one (and therefore is always zero for merchants and card holders).
Finally, element k of a vector r0 is noted [r0]k.

Then, in a convergence procedure similar to the PageRank algorithm [23], r0 is
updated to spread the fraud label through the tripartite graph. This is known as a
random walk with restart procedure (RWWR) [19]:

rk = α ·PTrk−1 +(1−α) · r0 (3)

where α is the probability to continue the walk and (1−α) is the probability to
restart the walk from a fraudulent transaction. This parameter could be tuned, but
was fixed to 0.85 in the experimental comparisons (see [23]). The procedure diffuses
the information about the transactions through the network.

Eq. 3 is iterated until convergence. Then, from rkc (where kc stands for k at
convergence) rTrx

kc , rCH
kc and rMer

kc can be extracted and considered as a risk measure
for each transaction, card holder and merchant respectively.

As fraud detection models should adapt dynamically to a changing environment,
this procedure is repeated several times, introducing a time decay factor. Each non-
zero entry of Atri and r0 is modified to characterize transactions based on current and
normal customers past behavior (see [28] for more details):

{
[Atri]i j ← e−γ·t([Atri]i j) or 0 if no relation
[r0]k ← e−γ·t([r0]k) or 0 if no fraud

(4)

where t(·) is the (scalar) time where transaction between i and j in matrix Atri

occurred (or k for vector r0), and γ is a scalar set in such a way that the half-life of
the exponential is: one day, one week and one month (i.e. elements are equal to 0.5
at half-life). For instance, if a transaction occured two weeks ago, the corresponding
element of Atri with week decay is equal to 0.25 and is 1/(214) with day decay.

Therefore, for each transaction of our starting dataset, we have 12 new features:
Transaction risk for transaction, card holder and merchant, each for four (no decay,
day decay, week decay and month decay) time windows.

However, this procedure cannot be computed in less than a few minutes, which
is not suitable with the six-seconds rule. Convergence on a graph with millions of
nodes is expensive and is therefore daily re-estimated over night. Transactions made
during the testing day are evaluated using the model trained on previous night. For
card holders and merchants, the graph-based feature values are extracted (looked up)
from the trained model, since they are likely to be part of the previous data.

Naturally, for the new transaction not part of the model, transaction-based features
have to be estimated, which is done through the formula:
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score(Trxi,k) =
1

n

∑
j=1

p ji +1
score(Meri)+

1
m

∑
j=1

p jk +1
score(CHk) (5)

where score(Trxi,k) stands for the new transaction score between merchant i and card
holder k, score(Meri) stands for the score of merchant i and score(CHk) stands for
the score of card holder k. It represents the score of a new transaction l after one new
iteration of Eq. 3 when this transaction is added to P (with pli = 1 and plk = 1). If
a new transaction involves a new merchant and/or card holder, score(Meri) and/or
score(CHk) are set to zero accordingly.

Finally, those 12 new features (plus transaction-related features, see Table 1) are
fed to a random forest classification model, as this model proved to perform well for
the problem at hand, predicting fraudulent transaction [3, 12].

Table 1: Features used by the random forest classifier. First group are demographical
features and second group are graph-based features. Notice that each transaction is
linked with a card holder and with a merchant at a certain date: those information are
only used to build the tripartite graph.

Variable name Description
inBEL/EURO/OTH Issuing region: Belgium/Europa/World
TX AMOUNT Amount of transaction
TX 3D SECURE Transaction used 3D secure
AGE Age of card holder
langNED/FRE/OTH Card holder language: Dutch/French/Other
isMAL/FEM Card holder is Male/Female
isFoM Card holder gender unknown
BROKER Code of card provider
cardMCD/VIS/OTH Card is a Mastercard/Visa/Other
01 Mer score Merchant risk score (boolean, no time damping)
ST/MT/LT Mer score Day/week/month decay merchant risk score (3 features)
01 CH score Card Holder risk score (boolean, no time damping)
ST/MT/LT CH score Day/week/month decay Card Holder risk score (3 features)
01 Trx score Transaction risk score (boolean, no time damping)
ST/MT/LT Trx score Day/week/month decay Transaction risk score (3 features)
TX FRAUD Target variable: Fraud/Guenuine

4 The Proposed Model
While showing good performance, APATE can be improved in various ways.
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4.1 Dealing with hubs
From the literature, it is known that presence of hubs in a network can harm the clas-
sifier [17, 25, 26]: hubs are nodes having a high degree and are therefore neighbors
of a large number of nodes. In our dataset, it corresponds to popular nodes such as
popular online shops like Amazon (as an example, the dataset is anonymised). Those
nodes tend to accumulate a high value of risk score since they are connected to a
lot of transactions. A simple way to counterbalance this accumulation is to divide
the risk score by the node degree after convergence. In general, it is possible to
divide by any power of the node degree and/or by different powers for the three
types of nodes of the tripartite graph (transactions, card holders and merchants). In
practice however, we did not find any combination that significantly beats the simple
divide-by-node-degree option (results are not reported here).

Furthermore, it allows us to make a link with the regularized commute time kernel
which is K = (D−αA)−1 (where D is the degree matrix) : element i, j of this kernel
can be interpreted as the discounted cumulated probability of visiting node j when
starting from node i (see [16, 21, 31] for details). The (scalar) parameter α ∈ ]0,1]
corresponds to an evaporating or killed random walk where the random walker has a
(1−α) probability of disappearing at each step (therefore it has the same interpreta-
tion as for the RWWR used in APATE, see Section 3). This method provided the best
results in a recent comparative study on semi-supervised classification [16] and the
second best results in another one [20]. In practice, the efficient implementation pro-
posed in [21], Equation (22), for semi-supervised classification with the Regularized
Commute Time Kernel is used and referred as RCTK.

4.2 Introducing a time gap
On the other hand, unlike in [28], the model cannot be based on past few days.
Indeed, fraudulent transaction tags (the variable we want to predict) cannot be known
with certainty without human investigators feedback. Moreover, since the fraudsters’
modus operandi is known to change over time (see 2.1), it is not acceptable to built
our model on old, less reliable (but fully inspected) data. However, it takes several
days to inspect all transactions, mainly because it is sometime card holders that report
undetected frauds. Of course, this makes our fraud detection problem harder [10].

In arrangement with field experts, we designed a real-life scenario containing
three sets of data:

1. Training set: data where the transaction fraud labels can be taken as reliable.
2. Gap set: data where the transaction fraud labels are unknown.
3. Test set: data of the day on which the algorithm is currently tested.

It corresponds therefore to a semi-supervised learning scheme (SSL), as training data
are partially labeled. If the Gap set is totally left aside, this is an usual supervised
learning (SL) problem again. Both cases (SL and SSL) were investigated:

• For the SL scheme, only the Training set is used to build the graph, and only the
Training set is used to train the random forest.
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• For the SSL scheme, the Training set and the Gap set are used to build the graph,
and only the Training is used to train the random forest.

Once again, in arrangement with field experts, 15 days of training data and seven
days for the gap set were chosen [5, 11]. This scenario is depicted on Fig. 1. Notice
that on this figure, τ controls the testing day and that models are systematically built
(overnight) on the 22 previous days. By changing τ , we get different testing days.

τ−22 τ−7 τ

1 day

TRAINING SET
GAP SET

TEST SET

TIME

Fig. 1: Real-life FDS scenario with three sets of data. It takes several days to inspect
all transactions, mainly because it is sometime the card holder who reports undetected
frauds. Hence, in practice, the fraud tags of the Gap set are unknown. This scenario
is repeated each day, as the parameter τ is incremented.

4.3 Including investigators feedback
Finally, even if in this last scenario it is not possible to know all fraud tags for the
gap set, it is still conceivable that a fraction of previous alerts have been confirmed
or overturned by human investigators (typically when a fraud alert occurs, the card is
blocked and the card holder is contacted by phone). In our case, we put this number
of feedbacks per day to 100, in arrangement with field experts.It is a realistic average
number of cards than a human investigator can check per day, usually by contacting
the card holder. So each day, the 100 most probable fraudulent card (according to the
model) are checked and then used as feedback. So in each of our gap set (except in
starting condition) 700 cards have been checked by human investigators. We will take
advantage of these investigated cases in order to try to predict more accurately the
fraudulent transactions. On average, it means that roughly 1400 transaction feedbacks
(two transactions per card) from previous testing day (previous τ’s of our model) are
available. This option will be referred as +FB and only make sense in a SSL scheme.

4.4 Removing merchant scores
Finally, we observed that removing merchant scores rises the performance. This is
surprising at first glance but, after investigation, it turns out that new transactions
involving new merchants cause issues (with our set-up, it corresponds to roughly
20% of merchants). In this case, the risk score is set to zero, causing the method to
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under-evaluate the risk. This should clearly be tackled but we choose to let this for
further work. This last option will be refers as noM.

5 Experimental comparisons
In this section, the possible variation of considered algorithms will be compared on
a real-life e-commerce credit card transaction data set obtained from a large credit
card issuer in Belgium. Those graph-based algorithms compute additional features
and were presented in Section 3 and 4. For practical purposes, considered algorithms
are recalled in Table 2 and the classifier is always a random forest with 400 trees.

The database is composed of 25,445,744 transactions divided in 139 days and
fraud ratio is 0.31%. The features list can be found in Table 1. From this table, the
first group contains socio-demographic features which are taken as-is. The second
group contains the graph-based features described in Section 3 and 4. Notice that
each transaction is linked with a card holder and with a merchant at a certain date:
those three pieces of information (card holder, merchant and date) are used to build
the tripartite graph. Finally, this database does not focus on a certain type of card
fraud (stolen, card-not-present,...) but contains all reported fraudulent transactions in
this time period.

Table 2: The nine compared models, see Sections 3 and 4 for acronyms. Considered
variations of the APATE Algorithm according to four dimensions: merchant score
status, hubs status, learning scheme and utilisation of feedback. Precision@100
(see Section 5) both for fraudulent card and transaction prediction is also reported
(formatted mean ± std)

Classifier name Mer Score Damp hubs Learning Feedback Card Pr@100 Trx Pr@100
RWWR SL = APATE used no Supervised no 18.64 ± 4.66 27.78 ± 11.61
RWWR SSL used no Semi-supervised no 16.95 ± 4.46 20.85 ± 10.14
RWWR SSL +FB used no Semi-supervised yes 14.19 ± 4.43 13.89 ± 8.49
RCTK SL used yes Supervised no 23.78 ± 9.52 40.50 ± 18.00
RCTK SSL used yes Semi-supervised no 44.55 ± 9.55 50.58 ± 13.99
RCTK SSL +FB used yes Semi-supervised yes 37.15 ± 10.14 49.06 ± 14.70
RCTK noM SL discarded yes Supervised no 45.35 ± 9.06 62.25 ± 11.97
RCTK noM SSL discarded yes Semi-supervised no 56.08 ± 8.06 81.61 ± 9.00
RCTK noM SSL +FB discarded yes Semi-supervised yes 56.65 ± 8.69 84.13 ± 8.42

As a performance indicator, Precision@100 [27] was chosen, in accordance with
field experts. It means that the 100 most probable (according to models) fraudulent
transactions are checked by human investigators each day (and added as feedback
in RWWR SSL +FB, RCTK w/ SSL +FB and RCTK noM w/ SSL +FB). Similarly
all most probable fraudulent transactions are considered until 100 cards have been
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0 1 2 3 4 5 6 7 8 9

RCTK noM SSL +FB

RCTK noM SSL

RCTK noM SL

RCTK SSL +FB

RCTK SSL

RCTK SL

RWWR SSL +FB

RWWR SSL

RWWR SL

Friedman/Nemenyi test for Cards Prec@100

Fig. 2: Mean rank (circles and crosses) and critical difference (plain line) of the
Friedman/Nemenyi test, obtained on a three-months real-life e-commerce credit card
transaction data set. The blue (bottom circle) method has the best mean rank and
is significantly better than red (crosses) methods. The Critical difference is 1.14.
Performance metric is Pr@100 (Precision@100) on fraudulent card prediction.

checked as usually human investigators verify all transactions of a card when they
investigate. Precision@100 reports the number of true fraudulent transaction or card
among 100 investigated cards. Notice that this last metric is more realistic as it is
somehow the normal work charge for a human investigators team.

Figure 2 compares methods from Table 2 through a Friedman/Nemenyi test [13].
To do so, we adopt a sliding window approach: each day (different τ from Fig 1)
is considered as a different (train-gap-test) dataset. This test compares the ranking
provided by Table 2 methods. Friedman null hypothesis is rejected with α = 0.05 and
Nemenyi critical difference is equal to 1.14. A method is considered as significantly
better than another if its mean rank is larger by more than this amount.

Firstly, RCTK always beats RWWR, RWWR noM was therefore discarded. This
superiority indicates that tackling the hubs problem is actually important.

Secondly, SSL leads to a huge improvement, but only if hubs have been damped.
SSL predicted frauds tend to contain more frauds with a fraudulent activity during
gap days, compared to SL ones. As the fraud tag is hidden for the gap set, it means
that this information is obtained by network analysis (train+gap).

Thirdly, even if +FB bring some kind of information, it only increases performance
when hubs are tackled (RCTK) and merchant scores are removed (noM). By the
way, results are not significantly better on our three-months dataset. Further analysis
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(not reported here) shows that with more data days and more checked cards, this
improvement becomes significant (with α = 0.05).

Lastly, removing merchant scores rises performance as explained in Section 4.
Overall, the best combination is RCTK noM SSL +FB, but it is not significantly

better than RCTK noM SSL.
Finally, Figure 3 indicates the frequency of selected features by the random forest

classifier. The method is RCTK SSL +FB and selects Mer scores most often. Sadly,
new transactions involving new merchants cause issues. In this case, the risk score
is set to zero, causing the method to under-evaluate the risk, resulting in a biased
prediction. Discarding those four features (Mer scores) does increase the overall
performance and selected variables of random forests stay similarly distributed.
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Fig. 3: Selected variables of random forests for the RCTK SSL +FB model for all
days. Mer scores tend to bias the prediction. Discarding those four features does
increase the overall performance (see Figure 2) and selected variables of random
forests stay similarly distributed.

6 Conclusion
In this paper, we start from an existing Fraud Detection Systems (FDS) APATE and
bring several improvements: which have a huge impact on performances damping
hub nodes (RCTK), introduce restrictions due to real application (SSL, Gap set,
Pr@100 as a metric) and introduce feedback information from human investigators
(+FB). Those improvements multiply the Pr@100 by three, both on fraudulent card
or transaction prediction (for acronyms, see Section 4).

However, introducing feedback does not lead to a significant improvement: feed-
back impact can be increased if more cards are checked, but this is non-realistic
for investigators. New transactions involving new merchants are still an issue (see
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noM in Section 4) which is let for further work: a possible way would be to mimic
the learning procedure from [7]. Another envisaged further work is to introduce
semi-supervised learning not only on graph analysis but also in main classifier.
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[25] Radovanović, M., Nanopoulos, A., Ivanović, M.: Hubs in space: Popular nearest neighbors in
high-dimensional data. Journal of Machine Learning Research 11, 2487–2531 (2010)
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