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Abstract

The growing availability of high throughput measure-
ment devices in the operating room makes possible the col-
lection of a huge amount of data about the state of the pa-
tient and the doctors’ practice during a surgical operation.
This paper explores the possibility of extracting from these
data relevant information and pertinent decision rules in
order to support the daily anesthesia procedures. In par-
ticular we focus on machine learning strategies to design
a closed-loop controller that, in a near future, could play
the role of a decision support tool and, in a further per-
spective, the one ofautomatic pilotof the anesthesia pro-
cedure. Two strategies (direct and inverse) for learning a
controller from observed data are assessed on the basis of a
database of measurements collected in recent years by the
ULB Erasme anaesthesiology group. The preliminary re-
sults of the learning approach applied to the regulation of
hypnosis through the bispectral index (BIS) in a simulated
framework appear to be promising and worthy of future in-
vestigation.

1 Introduction

In recent years, a growing number of organizations in
several domains have been allocating vast amounts of re-
sources to construct and maintain large databases and create
data warehouses. Health institutions are no exception and
nowadays a lot of medical teams are using low cost com-
puter technology enabling effective signal and data storage.
In this new scenario, machine learning and data mining
are key technologies in order to transform data into use-
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ful information for better diagnosis, event detection and de-
cision aid. This paper deals with the anesthesia domain
where several platforms have been made recently avail-
able for supporting the anesthesiologist in the operating
room. An example is the TOOLBOX software [8] which
has been used for several years by the group of anaesthe-
siology of the ULB Erasme hospital5. This tool, imple-
mented in Smalltalk, monitors the patient’state and acts asa
servo-controller on the multiple intravenous drug infusions,
whose setting is regularly adjusted by the anesthesiologist,
by simultaneously using pharmacokinetic and pharmacody-
namic principles [2] (Figure 1). Before and during the oper-
ation TOOLBOX stores plenty of statistics and monitoring
signals like: (i) generic information about the doctor, thepa-
tient and her general state, (ii) information about the typeof
surgery, (iii) the evolution of the hemodynamic and phys-
iological parameters (e.g. the BIS) of the patient, (iv) the
evolution of the drugs concentration levels chosen by the
anesthesiologist.

This paper discusses and assesses the role of machine
learning techniques in extracting information from the data
collected by TOOLBOX during daily operations. In par-
ticular we will focus on the control of hypnosis through
the bispectral index by acting on the Propofol (hypnotic)
drug levels. The bispectral index (BIS) [20, 9] is a well-
known measure adopted by anesthesiologists to rate the
depth of the hypnosis. The BIS index represents the electro-
encephalographic signal in a normalized range from 100 to
0, where 100 stands for the “awake” status and 0 stands for
electrical silence.

In our controller, the control action is expressed in terms
of change of the current Propofol level and is computed
on the basis of the current BIS, the desired BIS target, the
Remifentanil (analgesic) level and some patient personal
data (e.g. age and weight). The Remifentanil is taken into
account because of its known impact on the interaction be-
tween Propofol and the BIS index [10].

A machine learning approaches to the design of a

5The Hôpital Erasme is the ULB (Université Libre de Bruxelles (Brus-
sels, Belgium)) university hospital.
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Figure 1. The TOOLBOX software and the anesthesia
procedure. TOOLBOX accomplishes two main tasks: (i)
servo-controlling of the drugs delivery rate on the basis of
the targets fixed by the anesthesiologist and (ii) monitoring
and storing in a database the patient signals and the anes-
thesiologist actions .

closed-loop discrete-time controller is discussed: the in-
verse/forward approach [1, 7]. The idea ofinverse/forward
control consists in computing the control action by using
the information returned both by an inverse and a forward
representation of the system’s dynamics. The inverse con-
troller relies on a machine learning model which returns a
prediction of the change of the Propofol level as a function
of the desired BIS value. In this case the predictive model
itself acts as a controller since it outputs the control action
once the desired BIS is entered as input. Although this tech-
nique has been shown to be effective in a number of do-
mains [17, 15] there are some drawbacks (ill-conditioning,
lack of inverse relationship) that limit its usefulness.

A possible solution is the coupling of the inverse tech-
nique with a forward approach. The idea offorward control
is inspired by the fact that a forward model can predict the
future outputs of the system on the basis of present inputs.
Atkesonet al. [1] propose the adoption of a forward model
initialized with the result returned by the inverse modeling
procedure (inverse/forward approach). Our inverse/forward
controller relies on a machine learning model which returns
a prediction of the next value of the BIS index as a function
of the modification of the Propofol level. The control strat-
egy consists in (i) submitting to the predictive model a set
of alternative actions (i.e. different Propofol level modifi-
cations) in the neighborhood of the action proposed by the
inverse controller and (ii) selecting the best one (i.e. theac-
tion for which the predictive model returns the closest value
to the desired target).

In particular we will focus here on assessing and com-
paring a version of the inverse/forward approach based on
a identified linear model and a second version based on a
local learning approach (lazy learning) [7].

The learning procedure is supported by a feature selec-
tion to reduce the input dimensionality of the prediction
problem. It is well-known in the machine learning com-
munity that removing irrelevant and redundant features can

dramatically improve the predictive accuracy of learning al-
gorithms [4]. This is still more relevant in the anesthesia
domain where there is a large number of potential variables
(e.g. the patient age, the surgery type, the phase of the op-
eration) which could influence the value of the BIS signal.

In order to assess our approach we use the historical data
to simulate the control strategy in a selection of scenarios
where the suggested control action is compared with the
anesthesiologist recorded action. The obtained results are
promising and worthy of future investigation.

To our knowledge, this is the first study in the literature
which aims to learn a closed-loop controller for the BIS in-
dex exclusively on the basis of a large amount of measured
data. Existing approaches relies on more conventional con-
trol schemes or on the combination of first principle com-
partmental models with black-box identification schemes.
In [12] the closed-loop controls the anesthesia form induc-
tion to maintenance using evoked potential index as the con-
trolled variable. A PID controller of the BIS index is shown
to outperform a manual strategy in [16]. A compartmen-
tal model to study the effect of Isoflurane on BIS is studied
in [9]. An approach combining neural network and com-
partmental systems has also been developed in [11]

This paper is structured as follows: Section 2 presents
the inverse/forward strategy. Section 3 presents the learn-
ing methods adopted to learn the predictive models under-
lying the two controllers. Section 4 presents and discusses
the assessment of the proposed approaches in a data driven
simulation framework. The last section contains the conclu-
sion and open issues for future work.

2 The inverse/forward approach

Figure 2 shows an example of the evolution of the BIS
index during a short period of time. In this example the pa-
tient is a51 year-old woman of82 kilogrammes. Note that
536 seconds after the beginning of the operation, the anes-
thesiologist moves the target of Propofol from0.5µg/ml
to 2µg/ml when the target of Remifentanil is equal to
7ng/ml. As a consequence the BIS moves from an aver-
age value53.2 of in the interval[506, 536] sec to an average
value of43.6 over the interval[656, 776] sec.

The goal of our control architecture is to adjust the con-
centration of the Propofol drug in order to let the BIS of the
patient (the controlled system) attaining the desired level.
Suppose that the dynamics of the BIS index can be de-
scribed by a single-input single-output (SISO) NARMAX
(Nonlinear AutoRegressive Moving Average with eXternal
input) discrete-time dynamic system

b(t + ∆) = fd(b(t), p(t), δp(t), r(t), a, w) + ǫ(t) (1)

where, at timet, b(t) is the BIS value,p(t) is the current
concentration of Propofol,δp(t) is the Propofol concentra-
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Figure 2. The evolution of the BIS index during a short
period of time. At timet = 536 sec the anesthesiologist
changes the setting of the target of Propofol from0.5 to 2.

tion modification (control action) andr(t) is the concentra-
tion of Remifentanil. Also,a and w are the age and the
weight of the patient, respectively. In our study the time
step∆ is set to120 seconds. In fact, in order to smooth the
signal fluctuations,b(t) is the time average of the BIS signal
over the interval[t− 30, t] andb(t + ∆) is the time average
of the BIS index over the interval(t + 120, t + 240).

Once we assume that an inverse of the dynamics (1) ex-
ists, the control actionδp(t) can be expressed as the explicit
function

δp(t) = fi(b(t), b(t + ∆), p(t), r(t), a, w) + ǫ(t) (2)

This equation states that there is an unique input value at
time t that can drive the output fromb(t) to b(t + ∆).

In a generic nonlinear configuration, the inverse mapping
fi, if it exists, may not have an analytically closed form.
Therefore, learning methods can be useful in order to ap-
proximate the inverse mapping on the basis of a training
set. Assume that the inverse mapping (2) exists and that a
sufficiently accurate model̂fi(·, αN ), with set of parame-
tersαN , can be learned on the basis of an historical dataset
of N samples. Theinverse controltechnique consists into
computing at each step

uI(t) = f̂i (b(t), b∗, p(t), r(t), a, w, αN ) (3)

whereb∗ is the reference target.
Although this technique has been shown to be effective

in a number of domains [17] there are some drawbacks that
limit its usefulness. It is well-known in linear control theory
that the stability of the inverse control system is guaranteed
only in case of minimum-phase systems. Moreover in a
generic nonlinear case, if the space of control actions has a

different dimensionality than that of the output, the inverse
model can be ill defined. Finally, if the input/output relation
is characterized by a many-to-one mapping, then the inverse
modeling technique is unable to find an inverse [3].

A possible solution is the coupling of the inverse tech-
nique with a forward approach. The idea offorward control
is inspired by the fact that a forward modelf̂d(·, αN ) of the
dependency (1) can predict the future outputs of the system
on the basis of present inputs. It therefore seems reasonable
to turn this around and ask what control action at the present
instant of time would bring the future output nearest to the
desired value.

Atkeson et al. [1] propose the adoption of a forward
model as a way to perform a numerical inversion of the
plant. This requires searching in all the possible control
actions, the one which produces the output minimizing the
distance to the reference. The search routine can be ini-
tialized with the result (3) returned by the inverse modeling
procedure.

In our context the forward model returns, for a given
modification of the target of Propofol, a prediction

b̂(t + ∆) = f̂d(b(t), p(t), δp(t), r(t), a, w, αN ) (4)

The principle of the direct controller is simple. Letb∗ the
target BIS value andδp the control variable. Once the
modelf̂d is available and a setU of alternative control ac-
tions is fixed, the proposed control action is given by the
following minimization procedure

δp(t) = uD(t) =

= arg min
u∈U

∣∣∣f̂d(b(t), p(t), u, r(t), a, w, αN ) − b∗
∣∣∣ (5)

In other terms the control action is the one which minimizes
the deviation of the predicted future value ofb from the tar-
get valueb∗.

3 Learning the predictive models

This section describes the learning procedure adopted
to estimate the predictive models (3) and (4). Consider a
discrete-time dynamic system where the evolution of the
variableb can be described by a relation of the form (1)
where the mappingfd is unknown . Letv be a vector con-
taining all the variables apart formb. Suppose we have
collected a set of measures[b(ti), v(ti)], i = 1, . . . , N ,
called thetraining set. The prediction problem consists
in estimating the future valueb(t + ∆) when the vector
q(t) = [b(t), v(t)] (in the following also query point) is
taken as input. Learning methods can be used to estimate
the functionfd on the basis of a finite training set. The sim-
plest learning approach boils down to a conventional linear
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identification :b̂(t + ∆) = αT
Nq(t) where the vector of pa-

rameters is estimated on the basis of the observed dataset by
using linear regression techniques (e.g. least-squares) [18].
However, when linear identification does not return a suffi-
ciently accurate prediction, the control designer may want
to use alternative methods for learning non-linear relation-
ships. This paper adopts a method of local modeling, called
lazy learning, which proved to be successful in many prob-
lems of non-linear modeling [5] and in two international
competitions on data analysis and time series prediction [6].
In local modeling the value of an unknown mapping is es-
timated focusing on the region surrounding the point where
the estimation itself is required. The procedure essentially
consists of these steps: i) for each query pointq(t), select
a set of neighbors and weight their relevance according to
some relevance criterion (e.g., the distance) ii) choose a lo-
cal regression functionh in a restricted family of parametric
functions iii) compute the regression valueh(q). So doing
the approach requires keeping in memory the set of obser-
vations for each prediction, instead of discarding it as in a
global modeling approach (e.g., linear regression). At the
same time, local modeling requires only simple approxima-
tors (e.g., constant and/or linear) to model the dataset in a
neighborhood of the query point. Moreover, the method is
intrinsically adaptive, since the availability of new measure-
ments requires simply the updating of the observation set.

Lazy learning is a particular instance of local modeling
which provides an automatic way of selecting the optimal
number of neighbors for each query point. The idea consists
in starting from a minimum number of neighbors and recur-
sively adding neighbors until the predicted performance of
the corresponding local approximation decays significantly
or until a maximum number of examples is reached. This
procedure allows the detection of a linearity region around
the query point. For more details on local modeling meth-
ods and the distinctive features of lazy learning, we refer the
reader to [5].

3.1 Feature selection

A common issue to all the techniques which estimate
nonlinear dependencies from observed data is how to deal
with the dimensionality of the problem. Large dimension-
ality is known to make the estimation more badly condi-
tioned and prone to overfitting. A typical solution is to
have recourse to feature selection techniques. Examples
of feature selection approaches are filter [14] and wrapper
techniques [13]. In this paper, we use a wrapper technique
where a leave-one-out cross-validation procedure is used to
assess the accuracy of the input sets.

The goal was to define which variables are the most rel-
evant for the control task. The selection procedure consid-
ered a set composed of the features mentioned in (1) and

two more: the type of surgery and the phase of the op-
eration. As far as the forward model of the relation (1)
is concerned, the feature selection returned the same set
of variables for the two types of models (linear and lazy):
{b, p, δp, r}. As far as the model of the inverse relation (2)
is concerned, the feature selection returned this set of vari-
ables:{b, b(t + ∆), p, r, a}.

Note that dimensionality reduction is useful not only in
statistical terms but also as a way of returning to the anes-
thesiologist high-level information about which variables
play an important role on the evolution of the patient physi-
ological parameters. For instance, in our case the procedure
confirmed the importance of taking into account the titra-
tion of Remifetanil in the definition of a control strategy for
the BIS.

4 The simulation study

The simulation study is based on a set of data obtained
from 329 surgical operations carried out at the ”Hôpital
Erasme”. During each operation, the patient receives
Propofol as hypnotic and Remifentanil as analgesic. The
flow rates of the drugs are driven by TOOLBOX according
to the concentration targets chosen by the anesthesiologist
and the well-known pharmacokinetic sets of Schnider (for
Propofol) and Minto (for Remifentanil) [19].

The monitored data collected by TOOLBOX are stored
in a MySQL6 dataset. We used the statistical languageR7

for the analyses and the packageRMySQL8 for the con-
nection to the database. From the database we extracted a
learning dataset containing the values of all the variablesof
interest atN = 1491 different time instants. A time instant
ti is selected if the target of Propofol is adjusted by the anes-
thesiologist at timeti and when no further modification of
the Propofol target takes place in the interval[ti−60, ti+60]
sec.

4.1 The data-driven validation

Two are the most common ways of validating a closed-
loop control strategy: either adopting the controller in the
real setting, or testing its performance in a simulated envi-
ronment. In our case the early stage of this work and the
evident ethical issues make the first option too premature.
At the same time, given the complexity of the controlled
system (i.e. the patient) no simulated model would have
been convincing enough.

To solve this dilemma we adopted the most commonly
used strategy in machine learning when the assessment of
the generalization accuracy of a predictive model is at stake:

6http://www.mysql.com/
7http://www.r-project.org/
8http://cran.r-project.org/src/contrib/Descriptions/RMySQL.html
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the use of training and test procedure (also known as cross-
validation). This consists on using a portion of the data for
training our controller and leaving the remaining part for
testing. This should be in principle equivalent to activating
the controller in a specific configuration and gives us the
opportunity to compare the performance of the automatic
controller to the performance of the controller reputed at
the moments as the most reliable one, that is the human
anesthesiologist.

Although this approach does not account for the com-
plexity and the dynamic effects of a real testbed we consider
it as a preliminary and safe way to assess the property of an
automatic controller in such a sensible environment.

Three different cross-validation criteria are used to val-
idate the different controllers and all of them relies on
the notion of leave-one-out error. The leave-one-out er-
ror made by a controller is the quantity :Eloo(ti) =
δp(ti) − u(−i)(ti) whereu(−i) is the action returned by a
controller trained on all the data apart from the ones con-
cerning the instantti and δp(ti) is the action (increment)
taken by the anesthesiologist at timeti.

The first criterion is theNMSE (Normalized Mean
Squared Error):

NMSE =

∑N

i=1

(
Eloo(ti)

)2

∑N

i=1 (δp(ti) − µ̂p)
2

(6)

whereµ̂p = 1/N
∑N

i=1 δp(ti). Note that ifNMSE > 1
than we may interpret it by the fact that the control pre-
diction error is worser than the control error that we would
obtain if the average of the target modificationµ̂p would be
used as controller.

The second criterion is the meanMAE of the absolute
errors

MAE (U) =
1

N

N∑

i=1

∣∣Eloo(ti)
∣∣ (7)

This measure has the same dimension of theδp variable and
gives an indication of the average size of the errors made by
the controller.

The last criterion is the percentageP of cases that the
target modification returned by the controller has the same
sign as the modification proposed by the anesthesiologist

P =
100

N

N∑

i=1

I
[
δp(ti) · u

(−i)
]

(8)

whereI [A] =

{
1 if A ≥ 0,

0 if A < 0.
.

This criterion returns a measure of the frequency with
which the controller suggests a strategy similar to the one
adopted by the anesthesiologist.

Inverse controllers
model NMSE MAE P

linear 0.67 0.28 75.7
lazy 0.65 0.26 75.7

Table 1. Inverse controller.

Forward controller
model NMSE MAE P

linear 0.70 0.30 72.43
lazy 0.67 0.28 72.1

Table 2. Inverse/forward controller.

4.2 Results

The experimental session compares the accuracy of the
inverse and the inverse/forward approach (see section 2)
where two types of prediction models (a linear model and
a lazy model) are used. In the inverse/forward formulation
(Equation 5) we limit to consider a small setU composed of
the values[δp − 0.1, δp, δp + 0.1] whereδp is the outcome
of the inverse approach.

For each control approach and for each model type, we
report the values of the criteria defined in section 4.1 for the
set of variables returned by the feature selection procedure
(Section 3.1).

The figures in Table 1 show that the inverse approach re-
turns an NMSE significantly lower than one and that75% of
the time the sign of the modification of the Propofol titration
returned by the controller coincides with the one chosen by
the anesthesiologist. However, the values of table 2 show
that the forward approach does not bring any improvement
to the inverse strategy. Also, we note that in both the ap-
proaches (inverse and inverse/forward), the accuracy of the
control action is improved by the use of the lazy-learning as
a learning algorithm.

Finally, it is worth noticing to remark that the amount of
dosage proposed by the learned controller is slightly lower
and sensibly less standard deviation than the one of the
anesthesiologist (see Table 3).

anesth. best controller

mean ofδp 2.053 2.0434
sd ofδp 0.361 0.188

Table 3. Mean and standard deviation of the
Propofol modification
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5 Conclusion and future works

This paper proposes the use of machine learning tech-
niques to learn closed-loop controllers for supporting the
activity of anesthesiologists during surgical operations. The
results of the inverse approach appear to be promising and
ask for more convincing validation in realistic clinical set-
tings. We expect however that, on a shorter horizon, the
utility of the approach could be appreciated also in out of
the loop configurations. In fact, anesthesiologists still lack
of decision support tools able to suggest, validate and con-
firm course of actions during daily practice. We advocate
that adaptive expert systems able to learn from historical
data, once made available in the surgical block, could play
a major role in scenarios where anesthesia procedure are
performed either in emergency situations or by inexpert per-
sonnel.
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