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Abstract ful information for better diagnosis, event detection are d

cision aid. This paper deals with the anesthesia domain

The growing availability of high throughput measure- where several platforms have been made recently avail-
ment devices in the operating room makes possible the col-able for supporting the anesthesiologist in the operating
lection of a huge amount of data about the state of the pa-room. An example is the TOOLBOX software [8] which
tient and the doctors’ practice during a surgical operation has been used for several years by the group of anaesthe-
This paper explores the possibility of extracting from thes siology of the ULB Erasme hospital This tool, imple-
data relevant information and pertinent decision rules in mented in Smalltalk, monitors the patient'state and acts as
order to support the daily anesthesia procedures. In par- servo-controller on the multiple intravenous drug infunsip
ticular we focus on machine learning strategies to design whose setting is regularly adjusted by the anesthesidlogis
a closed-loop controller that, in a near future, could play by simultaneously using pharmacokinetic and pharmacody-
the role of a decision support tool and, in a further per- namic principles [2] (Figure 1). Before and during the oper-
spective, the one aofiutomatic pilotof the anesthesia pro- ation TOOLBOX stores plenty of statistics and monitoring
cedure. Two strategies (direct and inverse) for learning a signals like: (i) generic information about the doctor, jiae
controller from observed data are assessed on the basis of dient and her general state, (ii) information about the type
database of measurements collected in recent years by theurgery, (iii) the evolution of the hemodynamic and phys-
ULB Erasme anaesthesiology group. The preliminary re- iological parameters (e.g. the BIS) of the patient, (iv) the
sults of the learning approach applied to the regulation of evolution of the drugs concentration levels chosen by the
hypnosis through the bispectral index (BIS) in a simulated anesthesiologist.
framework appear to be promising and worthy of future in-  This paper discusses and assesses the role of machine
vestigation. learning techniques in extracting information from theadat
collected by TOOLBOX during daily operations. In par-
ticular we will focus on the control of hypnosis through
the bispectral index by acting on the Propofol (hypnotic)
drug levels. The bispectral index (BIS) [20, 9] is a well-
known measure adopted by anesthesiologists to rate the

In recent years, a growing number of organizations in depth of the hypnosis. The BIS index represents the electro-
several domains have been allocating vast amounts of reencephalographic signal in a normalized range from 100 to
sources to construct and maintain large databases and creat, where 100 stands for the “awake” status and 0 stands for
data warehouses. Health institutions are no exception ancelectrical silence.
nowadays a lot of medical teams are using low cost com-  |n our controller, the control action is expressed in terms
puter technology enabling effective signal and data starag of change of the current Propofol level and is computed
In this new scenario, machine learning and data mining on the basis of the current BIS, the desired BIS target, the
are key technologies in order to transform data into use- Remifentanil (analgesic) level and some patient personal
data (e.g. age and weight). The Remifentanil is taken into
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nesthesiologist Otheractions — Pationt dramatically improve the predictive accuracy of learnihg a
FUESlTooLBOX]Pelivery gorithms [4]. This is still more relevant in the anesthesia
f domain where there is a large number of potential variables
| Database Predictive | Surgeon (e.g. the patient age, the surgery type, the phase of the op-
eration) which could influence the value of the BIS signal.
Monitoring | Ir_l order to assess our approa<_:h we use t_he historical (_jata
fox BE) to simulate the control strategy in a selection of scenarios
St L where the suggested control action is compared with the

Figure 1. The TOOLBOX software and the anesthesia anesthesiologist recorded action. The obtained resudts ar

procedure. TOOLBOX accomplishes two main tasks: (i) pro_ltnlsmgkand \IN%rthy c;:"fu'turﬁ Inf\'/estlga;[jlor.]. he i
servo-controlling of the drugs delivery rate on the basis of 0 our knowledge, this Is the first study In the literature

the targets fixed by the anesthesiologist and (iiy monitoring ~ Which aims to learn a closed-loop controller for the BIS in-
and storing in a database the patient signals and the anes- dex exclusively on the basis of a large amount of measured
thesiologist actions . data. Existing approaches relies on more conventional con-
trol schemes or on the combination of first principle com-
partmental models with black-box identification schemes.
. . . . In[12] the closed-loop controls the anesthesia form induc-
closed-loop discrete-time controller is discussed: the in o 1o maintenance using evoked potential index as the con-
verse/forwarq approach [1’.7]' The |dea|mfers_e/forward_ trolled variable. A PID controller of the BIS index is shown
cont.rol consists in computing the cqntrol action by using y, outperform a manual strategy in [16]. A compartmen-
the mformapon retumned bOth, by an Inverse anq a forward tal model to study the effect of Isoflurane on BIS is studied
represenj[atlon of the systems dynamlcs. Thg inverse con- [9]. An approach combining neural network and com-
trolle_r r_ehes on a machine learning model which return_s a partmental systems has also been developed in [11]
prediction .Of the change of the_PropofoI level as quncnon This paper is structured as follows: Section 2 presents
.Of the desired BIS value. I.n th|§ case the predictive quel the inverse/forward strategy. Section 3 presents thedearn
itself acts asa contro_ller since it oytputs the controlc_m:tl ing methods adopted to learn the predictive models under-
once the desired BIS is entered as m_put.' Although this teCh'Iying the two controllers. Section 4 presents and discusses
nique has been shown to be effective in a number of do- o 5 ssessment of the proposed approaches in a data driven

lma:(nsf[_l?, 15] thlerg areh_somhe dlr_avx_/b_acks (:CII-Icondmonlng, simulation framework. The last section contains the conclu
ack of inverse relationship) that limit its usefulness. sion and open issues for future work.

A possible solution is the coupling of the inverse tech-
nique with a forward approach. The ideaofward control
is inspired by the fact that a forward model can predict the
future outputs of the system on the basis of present inputs. )
Atkesonet al. [1] propose the adoption of a forward model  Figure 2 shows an example of the evolution of the BIS
initialized with the result returned by the inverse modglin INdex during a short period of time. In this example the pa-
procedure (inverse/forward approach). Our inverse/ffadwa tientis as1 year-old woman 0_82 kllogrammes._ Note that
controller relies on a machine learning model which returns 536 seconds after the beginning of the operation, the anes-
a prediction of the next value of the BIS index as a function thesiologist moves the target of Propofol franb.g/ml
of the modification of the Propofol level. The control strat- 10 2¢g/ml when the target of Remifentanil is equal to
egy consists in (i) submitting to the predictive model a set 79/ml. As a consequence the BIS moves from an aver-
of alternative actions (i.e. different Propofol level mipdi ~ @ge value3.2 of in the interval[506, 536] sec to an average
cations) in the neighborhood of the action proposed by the value of43.6 over the interval656, 776] sec.

2 Theinversefforward approach

inverse controller and (ii) selecting the best one (i.e.dte The goal of our control architecture is to adjust the con-
tion for which the predictive model returns the closestgalu Centration of the Propofol drug in order to let the BIS of the
to the desired target). patient (the controlled system) attaining the desiredlleve

In particular we will focus here on assessing and com- SUppose that the dynamics of the BIS index can be de-
paring a version of the inverse/forward approach based onScribed by a single-input single-output (SISO) NARMAX
a identified linear model and a second version based on dNonlinear AutoRegressive Moving Average with eXternal
local learning approach (lazy learning) [7]. input) discrete-time dynamic system

The learning procedure is supported by a feature selec- _
tion to reduce the input dimensionality of the prediction bt +4) = Jab(t) p(1), p(8), (D), @, w) +e(t) - (1)
problem. It is well-known in the machine learning com- where, at timet, b(t) is the BIS valuep(t) is the current
munity that removing irrelevant and redundant features canconcentration of Propofofp(t) is the Propofol concentra-



An example of a BS signal evoluton different dimensionality than that of the output, the irseer
model can be ill defined. Finally, if the input/output redati
is characterized by a many-to-one mapping, then the inverse
modeling technique is unable to find an inverse [3].

A possible solution is the coupling of the inverse tech-
81 \ nigue with a forward approach. The ideafofward control

is inspired by the fact that a forward mod;él(-, ay) of the

dependency (1) can predict the future outputs of the system

on the basis of present inputs. It therefore seems reasonabl
I B— to turn this around and ask what control action at the present

N instant of time would bring the future output nearest to the

desired value.

‘ ‘ ‘ ‘ Atkeson et al. [1] propose the adoption of a forward
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The value of the BIS index
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model as a way to perform a numerical inversion of the
plant. This requires searching in all the possible control
Figure 2. The evolution of the BIS index during a short actions, the one which produces the output minimizing the
period of time. At timet = 536 sec the anesthesiologist distance to the reference. The search routine can be ini-
changes the setting of the target of Propofol fror to 2. tialized with the result (3) returned by the inverse modglin
procedure.

In our context the forward model returns, for a given

tion modification (control action) ane(?) is the concentra-  Medification of the target of Propofol, a prediction

tion of Remifentanil. Also,a andw are the age and the . 2
weight of the patient, respectively. In our study the time bt +A) = fa(b(t), p(1), op(t), 7(t), a;w, an) - (4)
stepA is set to120 seconds. In fact, in order to smooth the
signal fluctuations)(t) is the time average of the BIS signal

over the intervalt — 30, ¢] andb(t + A) s the time average model /, is available and a séf of alternative control ac-

of the BIS index over the intervat + 120, ¢ + 240). ; e T
. ) . t f , th trol act th
Once we assume that an inverse of the dynamics (1) ex-, lons is fixed, the proposed control action is given by the

: . 7 " following minimization procedure
ists, the control actiohp(¢) can be expressed as the explicit 9 P
function

The principle of the direct controller is simple. L&t the
target BIS value andp the control variable. Once the

op(t) = up(t) =

op(t) = fi(b(t),b(t + A),p(t), r(t),a,w) +€(t)  (2) = argmin | fa(b(t), p(t), u, (1), a,w, an) — b*|  (5)
uweU

This equation states that there is an unique input value at
time ¢ that can drive the output frol(t) to b(t + A). In other terms the control action is the one which minimizes
In a generic nonlinear configuration, the inverse mapping the deviation of the predicted future valuebdfom the tar-

f;, if it exists, may not have an analytically closed form. getvalueb*.

Therefore, learning methods can be useful in order to ap-

proximate the inverse_ mapping on _the basis_ of a training 3 L ear ning the predictive models

set. Assume that the inverse mapping (2) exists and that a
sufficiently accurate modef; (-, an), with set of parame-

tersap, can be learned on the basis of an historical datasett Tht'_s Sfth{En desoclz_rl?es the dltelarnéng p(;oiedu(r:e aqlgpted
of N samples. Thénverse controkechnique consists into dq es |tmzi_e g predictive TO esh( ) ?: ( ).I t_on5|fei[]a
computing at each step iscrete-time dynamic system where the evolution of the

variableb can be described by a relation of the form (1)

ur(t) = fi (b(t),b%, p(t), 7(t), a, w, on) (3) where the mapping, is unknown . Let be a vector con-
taining all the variables apart forln Suppose we have
whereb* is the reference target. collected a set of measurést;),v(t;)], ¢ = 1,..., N,

Although this technique has been shown to be effective called thetraining set The prediction problem consists
in a number of domains [17] there are some drawbacks thatin estimating the future valué(t + A) when the vector
limitits usefulness. Itis well-known in linear control thigy q(t) = [b(t),v(t)] (in the following also query point) is
that the stability of the inverse control system is guaradite taken as input. Learning methods can be used to estimate
only in case of minimum-phase systems. Moreover in a the functionf,; on the basis of a finite training set. The sim-
generic nonlinear case, if the space of control actions has glest learning approach boils down to a conventional linear



identification :E(t + A) = a%q(t) where the vector of pa-  two more: the type of surgery and the phase of the op-
rameters is estimated on the basis of the observed dataset bgration. As far as the forward model of the relation (1)
using linear regression techniques (e.g. least-squdt8F) [ is concerned, the feature selection returned the same set
However, when linear identification does not return a suffi- of variables for the two types of models (linear and lazy):
ciently accurate prediction, the control designer may want {b, p, dp, r}. As far as the model of the inverse relation (2)

to use alternative methods for learning non-linear retatio is concerned, the feature selection returned this set of var
ships. This paper adopts a method of local modeling, calledables:{b, b(t + A), p, 7, a}.

lazy learning, which proved to be successful in many prob-  Note that dimensionality reduction is useful not only in
lems of non-linear modeling [5] and in two international statistical terms but also as a way of returning to the anes-
competitions on data analysis and time series predictipn [6 thesiologist high-level information about which variable

In local modeling the value of an unknown mapping is es- play an important role on the evolution of the patient physi-
timated focusing on the region surrounding the point where ological parameters. For instance, in our case the proeedur
the estimation itself is required. The procedure essdéyntial confirmed the importance of taking into account the titra-
consists of these steps: i) for each query paii}, select tion of Remifetanil in the definition of a control strategy fo

a set of neighbors and weight their relevance according tothe BIS.

some relevance criterion (e.g., the distance) ii) choose a |

cal regression functioh in a restricted family of parametric 4 The simulation study

functions iii) compute the regression valug;). So doing

the approach requires keeping in memory the set of obser-
vations for each prediction, instead of discarding it as in a
global modeling approach (e.g., linear regression). At the

The simulation study is based on a set of data obtained
from 329 surgical operations carried out at the dpital

. i ) ; ) Erasme”. During each operation, the patient receives
same time, local modeling requires only simple approxima- Propofol as hypnotic and Remifentanil as analgesic. The
tor§ (e.g., constant and/or Iingar) to model the dataset in Slow rates of the drugs are driven by TOOLBOX according
neighborhood of the query point. Moreover, the method is to the concentration targets chosen by the anesthesiblogis

intrinsically adaptive, since the availability of new meees and the well-known pharmacokinetic sets of Schnider (for
ments requires simply the updating of the observation set. Propofol) and Minto (for Remifentanil) [19]

Lazy leaming is a particular instance of local modeling 5 monitored data collected by TOOLBOX are stored
which provides an automatic way of selecting the optimal in a MySQLS dataset. We used the statistical languRde
number of neighbors for each query point. The idea consistsfOr the analyses and the packaBMySQL8 for the con-
in starting from a minimum number of neighbors and recur- o cion to the database. From the database we extracted a
sively adding n_elghbors unti th_e prgdlcted perfo_rm_a_nce of learning dataset containing the values of all the variables
the corresponding local approximation decays signifigantl o eqt apy — 1491 different time instants. A time instant

or unt:jl a szIX|mun;] mémber. of e>f<arr|1_ples is reached. Th'z t, is selected if the target of Propofol is adjusted by the anes-
procedure allows the detection of a linearity region aroun thesiologist at time,; and when no further modification of

the query poi_nt.. Fo.r more details on local modeling meth- 4o Propofol target takes place in the intefval 60, ¢;+60]
ods and the distinctive features of lazy learning, we réfer t sec.

reader to [5].

4.1 The data-driven validation
3.1 Feature selection
Two are the most common ways of validating a closed-

A common issue to all the techniques which estimate loop control strategy: either adopting the controller ie th
nonlinear dependencies from observed data is how to deafeal setting, or testing its performance in a simulated-envi
with the dimensionality of the problem. Large dimension- ronment. In our case the early stage of this work and the
ality is known to make the estimation more badly condi- evident ethical issues make the first option too premature.
tioned and prone to overfitting. A typical solution is to At the same time, given the complexity of the controlled
have recourse to feature selection techniques. Examplesystem (i.e. the patient) no simulated model would have
of feature selection approaches are filter [14] and wrapperbeen convincing enough.
techniques [13]. In this paper, we use a wrapper technique To solve this dilemma we adopted the most commonly
where a leave-one-out cross-validation procedure is wsed t used strategy in machine learning when the assessment of
assess the accuracy of the input sets. the generalization accuracy of a predictive model is atestak

The goal was to define which varigbles are the most rgl- Shttp-//www.mysgl.com/
evant for the control task. The selection procedure consid- 7 /mwww.r-project.org/
ered a set composed of the features mentioned in (1) and ®http:/icran.r-project.org/src/contrib/DescriptidRéy SQL.html




the use of training and test procedure (also known as cross- Inverse controllers
validation). This consists on using a portion of the data for model | NMSE | MAE | P
training our controller and leaving the remaining part for linear | 0.67 0.28 757
testing. This should be in principle equivalent to actgti lazy | 0.65 0.26 5.7
the controller in a specific configuration and gives us the

opportunity to compare the performance of the automatic Table 1. Inverse controller.

controller to the performance of the controller reputed at
the moments as the most reliable one, that is the human Forward controller
anestheS|oIog|§t. model\ NMSE | VAE | P

A_Ithough this apprpach does not account for the com- inear 1 070 0.30 513
plexity and the dynamic effects of a real testbed we consider
it as a preliminary and safe way to assess the property of an lazy | 0.67 0.28 2.1
automatic controller in such a sensible environment.

Three different cross-validation criteria are used to val-
idate the different controllers and all of them relies on
the notion of leave-one-out error. The leave-one-out er-
ror made by a controller is the quantity E'°°(t;) =
op(t;) — u(=9(t;) whereu(~" is the action returned by a
controller trained on all the data apart from the ones con-
cerning the instant; and dp(¢;) is the action (increment)
taken by the anesthesiologist at time

The first criterion is theNMSE (Normalized Mean
Squared Erroy:

Table 2. Inverse/forward controller.

4.2 Results

The experimental session compares the accuracy of the
inverse and the inverse/forward approach (see section 2)
where two types of prediction models (a linear model and
a lazy model) are used. In the inverse/forward formulation
(Equation 5) we limit to consider a small §étcomposed of
N oo 2 the valuegép — 0.1, dp, p + 0.1] wheredp is the outcome
ity (B0 (t:)) 6)  Oof theinverse approach.

S (Op(ts) — ip)? For each control approach and for each model type, we
report the values of the criteria defined in section 4.1 fer th

~ N :
wherepi, = 1/N 3 ;_, ép(ti). Note that it NMSE > 1 set of variables returned by the feature selection progedur
than we may interpret it by the fact that the control pre- (section 3.1).

diction error is worser than the control error that we would
obtain if the average of the target modificatignwould be
used as controller.

The second criterion is the medd AE of the absolute

NMSE =

The figures in Table 1 show that the inverse approach re-
turns an NMSE significantly lower than one and th&{t; of
the time the sign of the modification of the Propofol titratio
returned by the controller coincides with the one chosen by

errors L the anesthesiologist. However, the values of table 2 show
MAE (U) = — Z |E“’0(ti)] 7 that th_e forward approach does not bring any improvement
N =1 to the inverse strategy. Also, we note that in both the ap-

. . . . proaches (inverse and inverse/forward), the accuracyeof th
This measure has the same dimension obtheariable and control action is improved by the use of the lazy-learning as

gives an indication of the average size of the errors made bya learning algorithm.
the controller. . o o

The last criterion is the percentageof cases that the Finally, it is worth noticing to remark that Fhe amount of
target modification returned by the controller has the samed0Sage proposed by the learned controller is slightly lower

sign as the modification proposed by the anesthesiologist 2nd sensibly less standard deviation than the one of the
anesthesiologist (see Table 3).

100 & .
P= =31 [op(ti) - ul )] ®)
N “4
i=1 ‘ | anesth. ‘ best controller |
L ifA>0 mean ofép | 2.053 2.0434
where! [A] = !f P sdofop | 0.361 | 0.188
0 1 < 0.

This criterion returns a measure of the frequency with  Table 3. Mean and standard deviation of the
which the controller suggests a strategy similar to the one  Propofol modification
adopted by the anesthesiologist.



5 Conclusion and futureworks

[9]

This paper proposes the use of machine learning tech-
nigues to learn closed-loop controllers for supporting the
activity of anesthesiologists during surgical operatiorse
results of the inverse approach appear to be promising ancho]
ask for more convincing validation in realistic clinicaltse
tings. We expect however that, on a shorter horizon, the
utility of the approach could be appreciated also in out of
the loop configurations. In fact, anesthesiologists stitkl
of decision support tools able to suggest, validate and con-
firm course of actions during daily practice. We advocate [11]
that adaptive expert systems able to learn from historical
data, once made available in the surgical block, could play
a major role in scenarios where anesthesia procedure are
performed either in emergency situations or by inexpert per
sonnel.
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