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Chapter 1

Introduction

In this work, we consider a transduction learning scenario [17] with dataset shift [37] in the
case where all the training and testing data are available in advance (transduction learning)
and where it is assumed possible that the distribution generating the training and testing
data changes between the two situations (dataset shift). The purpose of this work is to
study techniques able to use the training data and the inputs of the testing data in order
to adapt the predictive models to the dataset shift and consequently have better prediction
accuracies on the testing points.

This work studies more specifically the problem of dataset shifts in a supervised learning
context when the marginal probability of the output variable changes between the training
and the testing environments and when this new marginal probability in the testing environ-
ment is unknown. This problem is called in the scientific literature prior probability shift1

but we can find it under other names like global shift [24].

Besides the problem of adapting the classifier to the new distribution, it can also be
interesting to estimate only the new marginal probability of the output variable in the
testing set. This problem is called quantification learning [21, 48, 18, 20, 42]. The key
difference between the quantification and the classification tasks is that for quantification,
the ultimate goal is to estimate the prevalence of each class in the testing set, whereas in the
other task this is only an intermediate step, the ultimate goal being to improve classification
performance on data drawn from a new testing distribution.

Classical machine learning algorithms are solving two nested optimization problems: the
structural identification (i.e. search of the optimal hyper-parameters) and the parametric
identification (i.e. given hyper-parameters, search of the optimal parameters). In this work,
we investigate how the testing sets can be used to adapt the parametric identification phase
of the learning problem to the dataset shift.

1.1 Motivation

Shifts in the data distribution frequently occur in real-world classification problems. As
examples of changes in the data distributions, let us consider the following scenarios:

1Note that the expression ’prior probability shift ’ can be confusing. If P (Y = y|X = x) is the learning
task that we try to estimate where X and Y are respectively the input and the output variables, then, in
this context, P (Y = y) is called the prior probability (which is ultimately nothing else than the marginal
probability of the output variable). In prior probability shift, it is assumed that this marginal probability of
the output Y can change between the training and the testing environments.
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• In several binary classification problems, the two classes are not equally represented
in the dataset. For example, in fraud detection, fraudulent transactions are normally
outnumbered by genuine ones [8]. When one class is underrepresented in a dataset, the
data is said to be unbalanced. A common strategy for dealing with unbalanced clas-
sification tasks is undersampling the majority class in the training set before learning
a classifier [10, 9]. The assumption behind this strategy is that in the majority class
there are many redundant observations and randomly removing some of them does
not change the estimation of the within-class distribution. If we make the assumption
that training and testing sets come from the same distribution, then when the train-
ing set is unbalanced, the testing set has a skewed distribution as well. By removing
majority class instances, the training set is artificially rebalanced. As a consequence,
we obtain different distributions for the training and testing sets, violating the basic
assumption in machine learning that the training and testing sets are drawn from the
same underlying distribution.

• In a medical experimental setting with case control, it is common to fix in advance the
number of patients suffering from an illness and the number of healthy individuals. All
data collected from this study could be used to make a predictive model able to detect
newly infected patients. In this case, the prevalence of the two classes in the training
set does not reflect reality and once we apply the model in real new case situations,
we have no idea of the true a priori probability of the disease [38].

• Consider a geographic information system (GIS) platform able to automatically classify
areas of geographical maps based on remote sensing informations like satellite images.
Each area of a map under examination has to be labeled automatically by the GIS
platform according to its ground type (i.e. forest, house, farm, water, street, etc. ).
According to the region where the satellite image is taken (agricultural zone, urban
zone, etc.), the prevalence of each type of soil can strongly change. As the a priori
probabilities are unknown in advance and considerably vary from one map to another,
the marginal probability of the output variable in the training set could be very far
from the one of the test set. Therefore, it is necessary to recalibrate the model on each
new map such that the GIS platform can adapt to each new classification problem [27].

• This phenomenon of change in prevalence can also be observed in helpdesk callcenter
services, where the occurrence of certain support issues can vary over time (e.g. there
are more reports of cracked screens in the United States on July 4th, the U.S. Inde-
pendence Day [48]). The cause of an issue is stable but the prevalence of the type of
issue changes over time.

• In [18], the authors highlight the fact that most of the previous studies dealing with
tweet sentiment classification use a suboptimal approach. Usually, the ultimate goal
of most of these studies is not to estimate the label of an individual tweet but to
study the distribution of a set of tweets across the classes of interest. In other words,
the interest in such studies is not at the individual level, but at the aggregated level.
Tweet sentiment classification studies that focus on the aggregate level are concerned
with estimating the prevalence (or relative frequency) of each class of interest in the
unlabelled dataset. This task is known as quantification. The authors of [18] demon-
strate the importance of using optimal methods for each specific problem. The fact
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that quantification learning is still sometimes unknown by the machine learning com-
munity can lead to suboptimal solutions [21].

1.2 First formalization of the problem

This section describes the problem studied in this work from a formal point of view. We
have two populations from which observations can be generated:

• The first population is following the unknown distribution FXY (x, y) where Y ∈ Y =
{ω0, ω1, . . . ω|Y|−1} is a discrete random variable and the variable X takes its values in

X ⊂ Rd. From FXY (x, y), we assume that a set of Nd observations (xd, yd) is available.
These Nd observations are stored in a set d = {(xdi , ydi )}Nd

i=1 called the training set.
It is common to say that these observations are coming from the training (source)
environment.

• The second population is following the unknown distribution F
X̃Ỹ

(x, y) with X̃ ∈ X
and Ỹ ∈ Y. This population has the particularity that the random variable Y is
latent, meaning that no observations are available from this variable. From the second
population, we assume that a set of Nt observations xd of X̃ is available. These Nt

observations are stored in a set t = {xti}Nt
i=1 called the testing set. It is common to say

that these observations are coming from the testing (target) environment.

In the learning problem [3, 14, 23, 33, 44, 47] studied in this work, we assume the
possibility that the distributions from the two populations are different, i.e. FXY (·, ·) 6=
F
X̃Ỹ

(·, ·).
We assume a very specific type of change between the distributions of the two populations

FXY (·, ·) and F
X̃Ỹ

(·, ·). In this work, we assume that the marginal distributions P (Y = ·)
and P (Ỹ = ·) are different (i.e. prior probability shift [21, 48, 18, 20, 42]).

Given a the two couples of random variables (X,Y ) and (X̃, Ỹ ), in prior probability shift,
it is assumed that:

• The within class probability density is conserved between the source and the target
environments, i.e.

∀x ∈ X and ∀y ∈ Y : fX|Y (x|y) = f
X̃|Ỹ (x|y).

• The marginal distribution of the output variable changes2, i.e.

∃y ∈ Y : P (Y = y) 6= P (Ỹ = y).

Thanks to the Bayes’ theorem, we have

P (Y = y|X = x) =
fX|Y (x|y)P (Y = y)

fX(x)

and

P (Ỹ = y|X̃ = x) =
f
X̃|Ỹ (x|y)P (Ỹ = y)

f
X̃

(x)
.

2Note that due to the constraint that the probabilities must sum to one, there is actually at least two
values for which the marginal distribution of the output variable changes.
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Population1 ∼ FXY

(i)

Training data
d = {(xd

i , y
d
i )}Nd

i=1

(ii)
P̂ (Y = y|X = x)

Testing data
t = {xt

i}Nt
i=1

Population2 ∼ F
X̃Ỹ

(iii)
(iv)

Two problems:
- quantification
- classification

Figure 1.1: (i) A training set d is generated from the first population. (ii) An estimation
of the conditional probability to observe Y = y knowing X = x is extracted from d. (iii)
A testing set t is generated from the second population where FXY (·, ·) 6= F

X̃Ỹ
(·, ·). (iv)

The two following problems can be considered. In quantification, the marginal P (Ỹ = ·) is
estimated. In classification, the conditional probability estimated in FXY is recalibrated for
F
X̃Ỹ

.

Although the within class probability density is conserved, from the Bayes’ theorem, we
can see that a change in the marginal distribution of the output variable can implied that
P (Y = ·|X = ·) 6= P (Ỹ = ·|X̃ = ·).

Note that as the within class probability density is conserved, this information about
fX|Y (·|·) could be exchanged (transferred) between the training environment (i.e. first popu-
lation) and the testing environment (i.e. second population). As we will see, the algorithms
for quantification learning are often based on this idea of transferring this within class prob-
ability density.

Two types of problems are studied in this work:

• If we are interested in the estimation of P (Ỹ = ·) in the testing environment then it is
a quantification learning problem. Note that quantification goes under different names
in different fields and different papers. It is variously called prevalence estimation [2],
class probability re-estimation [1], class prior estimation [49], and class distribution
estimation [22, 28].

• If P (Y = y|X = x) has been learned (i.e. estimated) in the context of the first
population and if we want to use this predictive model in the context of the testing
environment then P̂ (Y = y|X = x) must be recalibrated. It is a classification learning
problem.

Figure 1.1 summarizes the quantification and the classification problems studied in this
work.

The learning problem studied in this work is called prior probability shift and is a type
of transfer learning problem [35, 40, 30]. A transfer learning problem defines a wide gen-
eral framework where knowledge obtained in one (or many) source environment(s) can be
transferred to one (or many) target environment(s) in order to improve machine learning
activities in the target environment(s). Chapter 2 introduces, as contribution of this work, a
new general formalism and a new definition (page 11) for transfer learning. The prior prob-
ability shift that we will consider in this work is a rather simple transfer learning problem
with only one source environment and one target environment.
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• The source environment contains FXY (·, ·) from which a training set d is available.

• The target environment contains F
X̃Ỹ

(·, ·) from which a testing set t is available.

Note that as the testing set is available during the learning phase, prior probability shift is
a transductive learning problem [17].

There are two families of algorithms for quantification learning when a prior probability
shift has been introduced.

• The first class of methods is the adjusted classify and count method or ACC (chap-
ter 4). In ACC, a predictive model h learns d from the first population. The model
h is then applied (by cross-validation) on the same training set d to compute an es-
timation P̂ (h(X) = ωk|Y = ωj). The same model is also applied on the testing set t

to compute an estimation P̂ (h(X̃) = ω). By using properties from transfer learning,
these two estimations are then used to compute the probability P̂ (Ỹ = ω), which is
what quantification learning tries to estimate.

To get P̂ (Ỹ = ω), a system of equations must be solved, but it may happen that the
solution proposed by the system is not a distribution (i.e. the solutions are not in [0, 1]
and/or do not sum to one). As a contribution of this work3, we propose the use of a
quadratic program with constraints to solve the system of linear equations (section 4.3
at page 37).

• The second method concerns the approaches based on the expectation-maximization
(EM) method (chapter 6). It is to highlight that the class distribution estimation
(CDE) method (chapter 5) is part of the family of the EM methods [42]. The EM
method is an iterative method that tries, during each step of the loop, to estimate both
the unknown marginal distribution P (Ỹ = ·) and the unknown conditional distribution
P (Ỹ = y|X̃ = x).

In section 6.3 at page 58, a method for adjusting, with the EM method, the bias term
of a classifier in presence of prior probability shift is introduced4. As contribution of
this work, in section 6.3, we have derived a new way to obtain the equation giving the
adjustment of the bias term.

We have also empirically shown that sometimes the EM algorithm can strongly diverge
to a bad solution when P (Ỹ = y|X̃ = x) is poorly estimated (sections 6.1.2 and 6.1.3
at page 51 and 53). As contribution of this work, we propose a modification of the
original EM algorithm able to stop the iteration when it starts to diverge (section 6.2
at page 56).

1.3 Contributions

• A new definition of transfer learning is introduced (page 11).

• We propose, in section 6.3 at page 58, a new way to get the equation (3.20) at page 32
for adjusting, with the EM method, the bias term of a softmax classifier in presence

3Based on an idea introduced by Prof. Johan Segers.
4The method was first introduced in a still unpublished paper Adjusting the Bias Term of Classifiers to

Unknown Prior written by Prof. Marco Saerens and Prof. Christine Decaestecker.
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of prior probability shift. As expected, we have empirically shown that adjusting the
probability P (Y = y|X = x) or directly adjusting the bias term when a softmax
classifier is used, leads to the exact same result (page 59).

• We also propose a new stopping criterion for the EM algorithm (section 6.2) and
empirical experiments show that our version significantly outperforms the original EM
algorithm in many cases.

• The ACC adjustment algorithm is adapted to use a quadratic program with constraints
during the evaluation of the system of linear equations (section 4.3).

• An experimental design is applied on 25 datasets to evaluate the algorithms presented
in this work (chapter 7). The full Python implementation of the experimental design
is available on GitLab5 for research reproducibility.

1.4 Structure of this master thesis

This work is structured as follows:

• Chapter 1: Introduction.

• Chapter 2: Literature review on the topic of transfer learning. As contribution, a
new general definition for transfer learning is proposed. Note that a focus is given on
prior probability shift which is the subtype of transfer learning problems that we will
cover.

• Chapter 3: Some prerequisites needed for a good understanding of the rest of the
document. This chapter covers three main topics. It starts with a general introduction
about machine learning. Then the EM algorithm, needed for chapter 6, is introduced.
The chapter ends with a section about the recalibration method in presence of prior
probability shift when the new marginal probability of the output variable is known.
This recalibration method is important because it makes the link between the quan-
tification and classification problems already defined at page 4 in section 1.2.

• Chapter 4: The adjusted classify and count (ACC) algorithm 6 to solve the prior
probability shift problem when the new prior is unknown. This method asks for the
solution of a system of equations. As a contribution of this work, we propose the use
of a constrained quadratic optimization method.

• Chapter 5: The class distribution estimation (CDE) algorithm to solve the prior
probability shift problem when the new prior is unknown.

• Chapter 6: The expectation-maximization (EM) algorithm to solve the prior proba-
bility shift problem when the new prior is unknown. We also introduce a new stopping
criterion for the EM algorithm.

• Chapter 7: The experimental evaluation of the algorithms introduced in chapter 4,
5 and 6.

• Chapter 8: Conclusion of this work.
5https://gitlab.com/ocaelen/exp-masterthesis-stat
6Also known as the confusion matrix approach
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1.5 Table of symbols

Concepts and notation are introduced when needed. For an additional quick reference, here
is a short list of the most important symbols:

F·(·) Cumulative distribution function
f·(·) Probability density function

gy(x) Estimation of the conditional probability: gy(x) = P̂ (Y = y|X = x)
d Training dataset
t Testing dataset
X Support of the input
Y Support of the output
Z = X × Y Support of an input/output observation
d Input dimension
IS Structural identification algorithm
IP Parametric identification algorithm
Λ Set of different model parameters
α Vector with given model parameters
α̂ Estimation of α by empirical risk minimization (ERM)
L(·, ·) Loss function
R(·) Function risk of a given model
Remp(·) Empirical risk (an estimation of R)
G(·, ·) Generalization error
m(·) Target function (in regression)
h(·, ·) Predictive model (also called hypotheses)
ε Noise
L Likelihood
` Log likelihood
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Chapter 2

A general framework for transfer
learning

2.1 Definition

In this work, we assume to be in a context where a shift in the data distribution is present
between the training environment and the testing environment. This problem is closely
related to another field of study known under various terms but the most common one
tends to be transfer learning. Many surveys about transfer learning are available in the
scientific literature [35, 40, 30]. Based on these articles, this section proposes a comprehensive
overview of some types of problems that can be encountered in transfer learning and some
of the most common methods to solve them.

Most of the machine learning methods assume that all the data involved in the learning
and the prediction phases are generated independently and are coming from the same dis-
tribution. But in many real situations, data can come from different sources and transfer
learning is one of the machine learning research fields that aims to transfer knowledge from
one or more source environments to one or more target environments. The central idea of
transfer learning is that the experience gained in a learning environment can help to improve
learning performance in a related but different environment.

In this work, we consider the context of offline learning, meaning that we have static
datasets. This is in contrast with online or batch learning where new fresh data are con-
tinually received and where the learning algorithm updates its parameters regularly after
consuming these new data. Online learning and batch learning also have problems when the
distribution that generates the data changes [13, 26] but we will not consider these cases.

More formally, for the rest of the explanation, let us suppose that we have two sets of
random variable pairs.

• The first set of random variables So = {(Xi, Yi)}|So|i=1 contains |So| different input/output
pairs (Xi, Yi) with i = 1, . . . , |So|, where the pair (Xi, Yi) follows the distribution
F(XiYi)(x, y) and where Xi and Yi are the two respective supports. The set So is char-
acterized by the fact that in its pairs both variables Xi and Yi are observable1. Let
di = {(xdi1 , ydi1 ), . . . , (xdiNdi

, ydiNdi
)} be a set of Ndi observations extracted from (Xi, Yi).

To summarize the situation, we have |So| distributions where both the input and the

1The suffix ’o’ in So stands for ’observable’.

9



output variables are observable and from where |So| sets of observations di can be
generated:





F(X1Y1)(x, y) −→
iid

d1 = {(xd11 , y
d1
1 ), . . . , (xd1Nd1

, yd1Nd1
)}

F(X2Y2)(x, y) −→
iid

d2 = {(xd21 , y
d2
1 ), . . . , (xd2Nd2

, yd2Nd2
)}

...

F(X|So|Y|So|)
(x, y) −→

iid
d|So| = {(x

d|So|
1 , y

d|So|
1 ), . . . , (x

d|So|
Nd|So|

, y
d|So|
Nd|So|

)}

• The second set of random variables Sl = {(X̃j , Ỹj)}|Sl|j=1 contains |Sl| different pairs

following the distributions F
(X̃j Ỹj)

(x, y) with j = 1, . . . , |Sl| and where X̃j and Ỹj are

the supports. The set Sl is characterized by the fact that the outputs Ỹj are latent

unobservable random variables2. Let d̃j = {xd̃j1 , . . . , x
d̃j
Nd̃j

} be a set of Nd̃j
observations

extracted from (X̃j , Ỹj) where Ỹj is latent.

To summarize the situation, we have |Sl| distributions where only the input variable
is observable and from where |Sl| sets of observations d̃j can be generated:





F
(X̃1Ỹ1)

(x, y) −→
iid

d̃1 = {xd̃11 , . . . , x
d̃1
Nd̃1

}

F
(X̃2Ỹ2)

(x, y) −→
iid

d̃2 = {xd̃21 , . . . , x
d̃2
Nd̃2

}
...

F
(X̃|Sl|Ỹ|Sl|)

(x, y) −→
iid

d̃|Sl| = {x
d̃|Sl|
1 , . . . , x

d̃|Sl|
Nd̃|Sl|

}

We will now assume that there are two types of environments: the source environment
and the target environment. The source environment is close to the target one and could
be used to help machine learning activities in the target environment. The central idea of
transfer learning is that the experience gained in the source environment can help to improve
machine learning performances in a related but different target environment. It should be
emphasized that the goal is not to make predictions in the source environment. The only
purpose of the data in the source environment is to make better predictions in the target
environment.

Let
St ⊆ {d1, . . . , d|So|} ∪ {d̃1, . . . , d̃|Sl|}

be the subset of all the observations in the target environment3 and let

Ss =
(
{d1, . . . , d|So|} ∪ {d̃1, . . . , d̃|Sl|}

)
\ St

be the subset with all the observations in the source environment4. The target environment
is the environment where someone would like to infer models in order to do predictions or
to do any other kind of machine learning activities like clustering. The goal is not to infer

2The suffix ’l’ in Sl stands for ’latent’.
3The suffix ’t’ in St stands for ’target’.
4The suffix ’s’ in Ss stands for ’source’.
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models directly in the source environment. The data in the source environment are only
used to improve machine learning activities in the target environment.

Note that St and Ss can both contain supervised (d, with label) and unsupervised (d̃,
without labels) observations.

In order to be able to make the distinction between the unsupervised observations in
target environment St on which a prediction is asked and the ones on which no prediction is
asked, the unsupervised observations on which a prediction is asked are noted t (rather than
d̃). Note that when St contains t elements than we are in a transduction learning context
because the testing observations t are known in advance.

Based on our formalism, we propose the following general definition for transfer learning:

Definition 1. Given |Sl|+ |So| distributions with at least one distribution that is different
from the others, transfer learning studies ways to transfer knowledge from the data observed
in the source environments Ss in order to do better machine leaning activities on the data
extracted from the target environments St.

Our definition includes a large number of different types of problems. The term ’machine
learning activities’ includes any kind of tasks: building a predictive model, doing clustering,
reinforcement learning,. . .

Notably, it is necessary that at least one of the |Sl|+ |So| distributions is different from
the other ones because when all the input/output random variables in the source and target
environments follow the same distribution, that is to say

(X1Y1) ∼ . . . ∼ (X|So|Y|So|) ∼ (X̃1Ỹ1) ∼ . . . ∼ (X̃|Sl|Ỹ|Sl|) ∼ FXY (x, y)

then the learning problem becomes a traditional machine learning problem without changes
in the data distributions.

Therefore, although very close, transfer learning cannot be considered as a semi super-
vised learning problem [50]. Semi supervised learning refers to a set of learning methods able
to use both labeled and unlabeled data for the training of the predictive model. Although
some labels are missing in the training set, semi supervised learning assumes that there is
no change in the probability distributions that generated the data. In contrast, transfer
learning assumes that some distributions are different. Based on our previously defined
formalism, semi supervised learning problems can be defined as follows:

• As there is no transfer, the source environment is empty: Ss = ∅.

• There are two pairs of random variables in the target environment: (X,Y ) and (X̃, Ỹ ).
These two pairs of variables follow the same probability distribution FXY (x, y):

(X,Y ) ∼ FXY (x, y) and (X̃, Ỹ ) ∼ FXY (x, y)

but in (X̃, Ỹ ) the output variable Ỹ is latent (not observable).

• From (X,Y ) and (X̃, Ỹ ), two sets of observations are generated d and d̃. The training
set is composed of these two sets of observations {d, d̃}. In other words, the training
set contains supervised and unsupervised observations but both are generated from
the same unknown distribution (i.e. no dataset shift).

• The semi supervised learning problem consists of building a predictive model with this
training dataset containing supervised and unsupervised observations.
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In [35], another definition of transfer learning is given. We will now see that our definition
is compatible with the definition of transfer learning given in [35]. Before discussing this
definition, it is needed to define a domain and a task. Let D = {X , FX(·)} be a domain
defined by two components: a feature space X (i.e. the support of the input random variable)
and a probability distribution FX(·), and let T = {Y, FY |X(·|·)} be a task defined by two
components: a label space (i.e. the support of the output random variable) and a conditional
probability distribution FY |X(·|·). In [35], transfer learning is defined as follows (definition
1 of [35]):

Definition 2. Given a source domain DS and learning task TS, a target domain DT and
learning task TT , transfer learning aims to help improving the learning of the target prediction
function F TY |X(·|·) in TT using the knowledge in DS and TS, where DS 6= DT , or TS 6= TT .

Concerning this definition 2 given in [35], we can make the following remarks5:

• A domain is a pair D = {X , FX(·)}. Thus the condition DS 6= DT implies that either
the feature space changes XS 6= XT or the distribution function changes FSX(·) 6= F TX(·),
or both. It should be noted that a modification in the support of the input (i.e.
XS 6= XT ) implies a modification of the distributions (i.e. FSX(·) 6= F TX(·)):

XS 6= XT ⇒ FSX(·) 6= F TX(·).

Therefore considering that there is transfer learning when there is a change in the
distribution (i.e. FSX(·) 6= F TX(·)) automatically includes the case where the support of
the variable can change.

This distinction is not made in our definition 1. In our definition, there is transfer
learning when there is a change in the distribution. Therefore our definition is com-
patible with definition 2 given in [35]. Note that the same remark can be made about
TS 6= TT .

• As there are usually multiple relevant domains from where knowledge can be trans-
ferred, multiple source transfer learning (MSTL) has recently received much atten-
tion [19]. In definition 2 given in [35], only the case where there is one source and one
target environment is taken in consideration. Therefore, this definition is not compat-
ible with a MSTL problem. In our definition 1, we suppose to have |So| source and
|Sl| target environments. Our definition is compatible with MSTL problems.

• Definition 2 given in [35] considers only the problem of estimating F TY |X(·|·) which ex-
cludes the other type of learning problems like unsupervised learning or reinforcement
learning. Our definition includes these cases.

2.2 Main research topics in transfer learning

According to [35] (section 2.3), there are three main research topics in transfer learning: (i)
what to transfer, (ii) how to transfer and (iii) when to transfer.

5Note: The last two points of this enumeration justify the fact to propose a new definition of transfer
learning. Transfer learning covers a large number of different applications and, to the best of my knowledge,
I haven’t found a satisfying definition in the scientific literature able to consider all these cases.
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• What to transfer searches what is the part of knowledge that can be transferred from
the source to the target environments. The information that can be shared depends
on the difference between distributions and supports. Usually we make assumptions
about the type of change in the distribution and, given this type of change, some of
the information may be transmitted.

For instance, in section 3.3 and in chapters 4, 5 and 6, we will assume that the source
environment contains only one element Ss = {d} and the target contains also one
element St = {t}. We will also assume to be in presence of prior probability shift
meaning that the prior probability of the output changes P (Y = ·) 6= P (Ỹ = ·). As
we will see, in presence of prior probability shift, the within class probability density
is conserved fX|Y (x|y) = f

X̃|Ỹ (x|y) and it is this information that we will transfer

between the source and the target environments.

Note that in the simplest case when all the distributions in So and Sl are the same,
we retrieve a traditional machine learning problem and a maximum of knowledge can
be transferred from the source environment to the target environment.

• Each type of transfer has a specific method of transfer. How to transfer tries to identify
the methods to perform this transfer of knowledge.

For instance, in chapters 4, 5 and 6, we will propose some methods to perform the
transfer of knowledge in presence of prior probability shift and next the section 2.3 will
present other techniques to do this transfer.

• When to transfer aims to identify the situations when knowledge should not be trans-
ferred. In some situations when the source and target domains are too far, the transfer
may reduce the performance of the predictive model. This situation is often referred
to as negative transfer [19]. Negative transfer occurs when knowledge is transferred
from highly irrelevant sources.

2.3 Categorization of transfer learning settings

The authors of [35] give a taxonomy of the most common transfer learning settings in the
machine learning literature. This section proposes a categorization close to the one proposed
in [35]: (i) inductive transfer learning, (ii) transductive transfer learning (iii) unsupervised
transfer learning (iv) reinforcement transfer learning.

2.3.1 Inductive transfer learning

Inductive transfer learning concerns the supervised learning setting where output data Y
from the target environment are available for the training. The most simple setting of
inductive transfer learning is the following:

Let (X1, Y1) ∼ FX1Y1(x, y) and (X2, Y2) ∼ FX2Y2(x, y) be two input/output pairs of
random variables. We suppose that (X1, Y1) and (X2, Y2) are respectively in the source
and target environments and, to have a transfer learning setting, one distribution must
be different from the other. Two sets of observations can be generated from these two
distributions: d1 and d2 with Ss = {d1} and St = {d2}. The difficulty of this inductive
transfer learning is to find methods able to use the data in d1 and d2 to build a predictive
model for the target environment.
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Note that this situation is close to the multi-task learning setting [6] which tries to learn
FX1Y1(x, y) and FX2Y2(x, y) simultaneously. Multi-task learning is in contrast with standard
methodology in machine learning which consists in learning one task at a time. In multi-
task learning, we have no element in the source environment (i.e. Ss = ∅) and both sets
of observations are in the target environment (i.e. St = {d1, d2}). Following definition 1,
multi-task learning is a kind of transfer learning problem because d1 and d2 are generated
from two distinct unknown distributions and we try to build simultaneously two models
from the two datasets by using all the information available in {d1, d2}.

2.3.2 Transductive transfer learning

Transductive transfer learning is a situation where no labeled data are available in the target
situation. The most simple setting of transductive transfer learning is the following with
two distributions.

Let FXY (x, y) be a distribution in the source context and let F
X̃Ỹ

(x, y) be a distribution

in the target context where Ỹ is a latent variable meaning that no observations can be
extracted from it. To have a transfer learning setting, FXY (x, y) must be different from
F
X̃Ỹ

(x, y). From the two previous distributions, we can generate the two following sets of
observations: d and t. Set d is the training dataset from which FY |X(y|x) is estimated and t
is the testing dataset from which the estimation of FY |X(y|x) is adjusted to fit F

Ỹ |X̃(y|x). As

the testing set is known during the learning step, we are in a transductive learning context.

As no output observations are available in the target environment and as the two dis-
tributions FXY (x, y) and F

X̃Ỹ
(x, y) can be arbitrarily far from each other, in general, the

estimation of F
Ỹ |X̃(y|x) in the target environment is unsolvable. Hence, it is needed to make

simplifying assumptions about the type of drift in the probability distributions. In [40], a
number of common forms of dataset shift are introduced. Each form has its own assumption
about the type of shift. This section will list these different forms.

We suppose to have two random variables: an input variable X ∈ Rd and a discrete
output variable Y taking values in {ω0, ω1, ω2, . . . , ω|Y|−1}. In dataset shift context, we
assume a change between the source and target situation. To make the distinction between
both situations, we assume that X̃ and Ỹ are respectively the input and output random
variables in the targeting situation where Ỹ is latent.

Covariate Shift : This situation happens when the training data are generated from
FXY (x, y) and the testing data are coming from F

X̃Ỹ
(x, y) and only the marginal

distribution of the input variable changes (i.e. fX(·) 6= f
X̃

(·)). In covariate shift, it
is assumed that the condition probability between the input and the output variables
is conserved (i.e., P (Y = ·|X = ·) = P (Ỹ = ·|X̃ = ·)). As the join distribution is
function of the distribution of the input variable, it is not surprising that a change in
the input variable can have an impact on the join distribution.

Example: Assume the problem where the risk of a future disease (Y ) must be predicted
based on current habits (X). Of course, there can be a causal effect of the current
habits on the risk of having a given disease in the future (for example smoking habit
and lung cancer in the future). Suppose now that changing circumstances (e.g. public
smoking ban) affect the habits (the distribution of X becomes different from X̃). The
cause of the disease is stable but the prevalence of the disease changes over time. How
does this affect the predictive model P (Ỹ = y|X̃ = x)?
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Figure 2.1: Left: Supervised training data before prior probability shift. Right: Unsuper-
vised testing data after prior probability shift.

As, by definition, in a covariate shift only the input distribution changes (fX(·) 6=
f
X̃

(·)) and not the conditional one (FY |X(·|·) = F
Ỹ |X̃(·|·)), covariate shift should have

no effect on the predictive model. The knowledge about FY |X(y|x) in the source
environment can be directly transferred to the target environment. But there are
a number of contributions like [39] that tend to show the potential computational
advantages of adjusting for covariate shift. One of the advantage is that rather than
worry about the overall fit of the model, the idea in [39] is to use weightings and
simpler model classes to focus only on a local region relevant to the test cases.

Prior Probability Shift : This occurs when the output marginal distribution changes
between the training and the testing (i.e. P (Y = ·) 6= P (Ỹ = ·)). Note that in
prior probability shift, it is also assumed that the within class distribution of the in-
put variable is not changing (i.e. fX|Y (·|·) = f

X̃|Ỹ (·|·)). Although the within class

probability density is conserved, a change in the marginal distribution of the output
variable can implied a change in the conditional probability to observe the output (i.e.
P (Y = ·|X = ·) 6= P (Ỹ = ·|X̃ = ·)). As in classification, it is the conditional distri-
bution of the output that we try to predict, it is not surprising that prior probability
shift can have an effect on the predictive models.

In prior probability shift, two cases can be considered: either the new output distri-
bution is known or not.

Example 1 : Prior probability shift occurs for example in medical trials with control
cases. If 50% of the individuals are in the control group and the other 50% are suffering
a disease, then once the models are created and applied in real world situations, we have
bad probability predictions because we have no idea about the true prior probability.
This is an example where the new output distribution is unknown.

Example 2 : When the dataset is highly unbalanced, it is common to reduce at random
observations from the majority class [9]. By doing that, we introduce prior probability
shift by design and it is an example where the shift in the a priori is known. Of course,
in this second example, when the probability shift is known, doing quantification
learning makes no sense.

Figure 2.1 shows a synthetic example of a prior probability shift problem. The left part
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shows the supervised data observations available in the source environment and the
right part of the figure shows the unsupervised data from the target environment after
prior probability shift6. The purpose of the learning task can either be to estimate the
new prior probability of the output variable or to recalibrate for the target environment
a classifier learned on the supervised data available in the source environment.

For a known shift in FY (·) to F
Ỹ

(·), the prior probability shift is easy to adjust for:

• As it is assumed that fX|Y (·|·) = f
X̃|Ỹ (·|·), a generative model (like naive Bayes)

can directly use the training set d to estimate f
X̃|Ỹ (·|·).

• The new a priori P (Ỹ = ·) is assumed to be known.

• We can estimate the conditional distribution of the output from P (Ỹ = y|X̃ =
x) ∝ f

X̃|Ỹ (x|y)×P (Ỹ = y) where the normalization term f
X̃

(x) can be obtained

from the law of total probability (i.e. f
X̃

(x) =
∑

y fX̃|Ỹ (x|y)×P (Ỹ = y)) or can

be estimated from t.

In the case of non-generative models, a more generic method will be presented in
section 3.3 at page 26.

When the shift in the output is unknown, making a prediction

P (Ỹ = y|X̃ = x) =
f
X̃|Ỹ (x|y) P (Ỹ = y)

f
X̃

(x)
,

is not possible. The distribution f
X̃|Ỹ (x|y) can be estimated from d and f

X̃
(x) can

be estimated from t but, to be able to estimate P (Ỹ = y|X̃ = x), we need also an
estimation of P (Ỹ = y) (i.e. quantification).

To solve this problem, in [40], the authors propose to use generative classes of models
to estimate f

X̃|Ỹ (x|y) from d and to use Bayesian statistic to infer an a posteriori

distribution of Ỹ from an a priori distribution of Ỹ .

• An a priori distribution over Ỹ is first specified by supposing that the distribution
of Ỹ is parameterized by a parameter θ. The a priori distribution over Ỹ is then
defined through an a priori distribution over Θ

P (Ỹ = y) =

∫
P (Ỹ = y|Θ = θ) fΘ(θ) dθ.

Note that the form of the parametric distribution and the a priori fΘ(·) must
both be provided by the analyst.

• An a posteriori distribution over Θ is then computed from the unsupervised data
in t (see equation (13) in [40])

fΘ(θ|t) =
∏

j

∑

y

f
X̃|Ỹ (xj |y) P (Ỹ = y|Θ = θ) fΘ(θ)

where f
X̃|Ỹ (x|y) can be estimated from d, where j counts over the testing data

t, and where y goes through the values that the output can take.

6As we can guess, the proportion of points of the green category has decreased in the target environment.
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• Then, the prediction taking into account the uncertainty of the parameters and
the observed testing data is

P (Ỹ = y|X̃ = x, t) =
f
X̃|Ỹ (x|y)

∫
P (Ỹ = y|Θ = θ) fΘ(θ|t)dθ

f
X̃

(x)
.

It is prior probability shift that we will consider in the next chapters. The chapters 4, 5
and 6 will study other methods to manage prior probability shift when the new prior
is unknown.

Sample Selection Bias : This problem occurs when learning data points do not accu-
rately represent the distribution of the test case due to a selection process. This term
includes all the biases that can lead to the fact that the training observations do not
constitute a representative group of the population in the testing set.

Let v be a binary selection variable that decides if a data must be stored in the
training set (v = 1) or not (v = 0). Let V be the associated Bernoulli random
variable. In a sample selection bias, it is commonly assumed that the value taken
by the binary selection variable depends on both the input and the output variable:
P (V = v|X = x, Y = y). It is important to depend on the two variables because
we can see that the sample selection bias becomes a covariate shift if the binary
selection variable is independent of the output (i.e. P (V = v|X = x)) or becomes a
prior probability shift if the binary selection variable is independent of the input (i.e.
P (V = v|Y = y)).

Domain Shift : This happens when there is a change in the measurement. In this case,
we assume that X0 is a latent unobservable random variable and the output variable
Y is dependent on this latent X0. The difficulty is that we only observe some map
X = M(X0) into the observable space and M(·) can be different between the training
and the testing. The issue comes from the fact that the map function is unknown.

Example: Such a latent variable X0 could, for example, be a price of a product in dollar
adjusted to a fixed euro / dollar index taken on a given date. The output variable Y
is dependent on this latent variable X0. The difficulty is that we never observe X0.
We only observe some map function X = M(X0) and that map can change between
source and testing environment.

Source Component Shift : Source component shift can be the most common form of
dataset shift. It indicates that the data come from a number of different sources, each
with their own distribution and the proportions of these sources may vary between
training and test scenarios.

Example: This occurs for example in production factories where a particular product
can be made in many factories. The issue comes from the fact the proportion of
product sourced by each factory can change between the source environment and the
target environment. And the new proportions in the target environment are unknown
to the analyst, (s)he only observes the products. Without knowledge about these
proportions in the the target environment, the analyst has to transfer knowledge from
the source environment to the target environment in order to estimate characteristics
on the new products.
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In source component shift, different data sources S are represented in the dataset
and each data source has its own distribution FXY |S(x, y|s). The data source S is a
latent variable from which no information is available and, as we are in a context of
dataset shift, the distribution of S can change between the training and the testing
environment.

2.3.3 Unsupervised transfer learning

Unsupervised transfer learning, also called Self-taught clustering, concerns situations where
there are no labeled data available in both the source and the target environments [7]. It
aims at clustering a small collection of target unlabeled data with the help of a large amount
of non-labeled auxiliary data. The target and the auxiliary observations may be generated
from different probability distributions.

Self-taught clustering uses the data from the source and the target environments to build
a new representation of the input features. The rationale is that a good data representation
can make the clustering task much easier. Once this new representation is built, the target
observations are projected in this new space and clustering is performed in this space.

2.3.4 Reinforcement transfer learning

Reinforcement learning [41] refers to a class of machine learning problems where the purpose
is to learn a policy from experiments. The policy says what to do in different situations in
order to optimize a quantitative reward over time. Scientific works investigate the relation
between transfer learning in reinforcement learning [43]. In a reinforcement learning context,
the positive effects of transfer learning may help the agent to learn a new (but related) task
more quickly. The idea is that generalization may occur not only within tasks, but also
across reinforcement learning tasks. The experience gained in learning a policy in one task
can help to improve the learning of a policy in a related but different task.
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Chapter 3

Prerequisites

3.1 Formalization of the learning problem

This section aims to define the notations of the main machine learning concepts [3, 14, 23,
33, 44, 47] that we will use during the rest of this work. The formalization that we will
introduce in this section is inspired by [4] who is itself reusing some notations from the work
of [45]. Note that some notions have already been introduced previously in chapters 1 and
2. These notions will be reintroduced in this chapter into a machine learning perspective.

In this work, we consider the supervised setting. Let d = {(xi, yi)}Nd
i=1 = {zi}Nd

i=1 be an
input/output training dataset with Nd independent observations obtained from the same
fixed but unknown joint distribution Z = (X,Y ) ∼ FZ(z) = FXY (x, y) = FY |X(y|x)FX(x)

where X ∈ X ⊂ Rd, Y ∈ Y and Z ∈ Z = X × Y. The set d is a realization of the
random variable D ∼ ∏Nd

i=1 FZ(zi) = FD(d). For instance, if Nd = 2 then d = (z1, z2) and
D ∼ FZZ(z1, z2) = FZ(z1) FZ(z2) =

∏2
i=1 FZ(zi).

In this work, we will consider the case Y ⊆ R (i.e. regression) and the case Y = {ω0, ω1,
ω2, . . . , ω|Y|−1} (i.e. classification). Note that the previous formalization is compatible with
the classical definition of the regression problem

Y | x = m(x) + ε, with ε ∼ Fε(e) and E(ε) = 0 (3.1)

where E[Y |x] = m(x) ∈ Y ⊆ R is the unknown target function for which h(x, αs) with
αs ∈ Λs is an estimation1. It is common to do the following normal assumption about the
noise:

Y | x = m(x) + ε, with ε ∼ N(0, σ2
ε ) ⇔ fY |X(y|x) = N(m(x), σ2

ε ). (3.2)

In a classification context, Bayes’ decision rule

arg max
ω∈Y

P (Y = ω|X = x) (3.3)

plays the same role as the target function m(·) in regression. This is an unknown function
that assigns to each input x ∈ X a label from Y in a way that minimizes the average
classification error.

Let t = {xtj}Nt
j=1 be a testing set with Nt independent input samples2 following the

unknown distribution F
X̃Ỹ

(x, y) where Ỹ is a latent variable meaning that no observations

can be generated from it. The set t is a realization of the random variable T ∼∏Nt
j=1 FX̃(xtj).

1The h(x, αs) function will be defined later.
2The exponent t in xtj stands for xtj ∈ t.
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Note that the basic assumption in machine learning is that the training and testing sets
are drawn from the same distribution. But, as in this work we assume the possibility that
there is a shift in the dataset, to be able to distinguish both situations, we put a tilde on
the random variables coming from the target environment.

Following the definition 1 given at page 11:

• We have |Sl| = 1 distribution where the output random variable Ỹ is latent and
|So| = 1 distribution where all the variables are observable.

• We make the assumption that the distribution in the source and the target environ-
ments are different.

• Both the source and the target environments contain only one element Ss = {d} and
St = {t}.

• As no output observations are available in the target environments, it is a transductive
transfer learning problem (see page 14).

Of course, if we assume that there is no shift in the distributions then

∀x ∈ X ,∀y ∈ Y : FX,Y (x, y) = F
X̃,Ỹ

(x, y)

and the learning problem becomes a traditional machine learning problem without need for
transfer learning.

The goal of our learning problem is to use d to learn the parameters α of a predictive
model (also called hypotheses) h : X × Λ→ Y where α ∈ Λ and transfer learning is needed
to recalibrate the model to the target distribution F

X̃Ỹ
(x, y).

The set Λ contains different possible values of the parameters and it is common to group
these possible values in families or in types of models. Examples of families of models are
linear models α0 +

∑d
i=1 αixi where, in this case, α ∈ Rd+1 represents the coefficients of a

given linear model and Λ is a subset3 of Rd+1. A feed-forward neural network is another
example where α is the set of values taken by the synaptic weights.

A classifier h : X × Λ → Y = {ω0, ω1, ω2, . . . , ω|Y|−1} with α ∈ Λ is a function that
returns for each input x a prediction ŷ = h(x, α) ∈ Y in the discrete set of output values.
This definition includes the class probability estimation (CPE) models [25] where

h(x, α) = arg max
ω∈Y

gω(x, α)

with gω : X × Λ → [0, 1] ⊂ R and with
∑

ω∈Y gω(x, α) = 1. In the case of CPE models,
the value of gω(x, α) can be interpreted as an estimation of the a posteriori probability to
observe any output value ω in Y, for a given input x:

gy(x, α) = P̂ (Y = y|X = x, α)

≈ P (Y = y|X = x, α).
(3.4)

After learning, the predictive model can return predictions ŷ = h(x, α) ∈ Y. Given a
loss function L(y, h(x, α)), in the classical inductive learning context, the functional risk R

3Lasso [25] and ridge [25] are two classical methods to reduce the size of Λ for linear models.
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measures the capacity of a model to return good predictions for any new input value. It is
defined as the expected value of the loss where X̃ and Ỹ are the random variables:

R(α) = E
[
L(Ỹ , h(X̃, α))

]

=

∫

X ,Y
L(y, h(x, α)) dF

X̃Ỹ
(x, y).

(3.5)

In this work, regression and classification are the two main learning problems that we
consider. In regression, the support of the output is in the set of real values and it is common
to use the mean squared error (MSE)

L(y, h(x, α)) = (y − h(x, α))2

as loss function. Note that, in regression, we can see that if the function h fits perfectly the
target function (i.e. ∀x ∈ X , m(x) = h(x, α)) then the functional risk R is equal to the
variance of the noise σ2.

R(α) = E
[
L(Ỹ , h(X̃, α))

]

= E
[
(Ỹ − h(X̃, α))2

]

= E
[
(m(X̃) + ε̃− h(X̃, α))2

]

= E
[
(m(X̃) + ε̃−m(X̃))2

]

= E
[
ε̃2
]

= σ̃2

In classification, the output takes its values in a discrete set {ω0, ω1, . . . , ω|Y|−1}. The
confusion matrix [11, 36] is typically used to evaluate or to visualize the behavior of models
in supervised classification contexts [25]. It is a square matrix in which the rows represent
the actual class of the instances and the columns their predicted class. If we are handling
a binary classification task, then the confusion matrix [5] is a 2× 2 matrix that reports the
number of true positives (#TP ), true negatives (#TN), false positives (#FP ), and false
negatives (#FN) as follows: [

#TP #FN
#FP #TN

]
.

This matrix contains all the raw information about the predictions provided by a classifi-
cation model on a given dataset. To evaluate the generalization accuracy of a model, it is
common to use a testing dataset which was not used during the learning process of said
model. Many synthetic one-dimensional performance indicators can be extracted from a
confusion matrix. The performance indicator can be, for example, the precision, the recall,
the F-score ... When different kinds of errors are not assumed to be equal, in association
with a 2 × 2 cost matrix, cost-sensitive performance indicators [15] can also be computed
from the confusion matrix. The choice of the suitable performance indicator is directly
linked to the objective of the learning problem. If the classical accuracy measure is taken
into account, then

L(y, h(x, α)) =

{
0, if y = h(x, α)

1, otherwise
.
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3.1.1 Learning as a nested optimization problem

Of course, as F
X̃Ỹ

(x, y) is unknown, the functional risk R is not directly available and
must be estimated. In this context, the objective of classical inductive learning is to find
the optimal parameters in Λ that minimize the unknown functional risk R(·) when the
input/output samples in d are the only available information. We propose to follow a
common procedure to find these optimal parameters [4]. It is implemented at two nested
levels: the structural identification (i.e. search of the optimal hyper-parameters) and the
parametric identification (i.e. given hyper-parameters, search of the optimal parameters).

The parametric identification algorithm IP solves the inner level of the optimization
problem. It searches, in a given set of parameters Λ, the optimal function h(·, α̂) minimizing
an empirical risk Remp computed on the training set d:

α̂ = arg min
α∈Λ

Remp(α) (3.6)

where

Remp(α) = N−1
d

Nd∑

i=1

L(yi, h(xi, α)).

Note that equation (3.6) minimizes the empirical risk Remp rather than the functional risk R.
This is called the empirical risk minimization (ERM) inductive principle [45]. Examples of
parametric identification procedures in regression are least-squares for linear models or back-
propagated gradient-descent for feed-forward neural networks. In classification, maximum
likelihood is commonly used for logistic regression models.

The parametric identification can be done in different sets of parameters Λs with s =
1, . . . , S. It is common to consider that {Λs}Ss=1 contains only one type of models where s
measures the complexity (i.e. the size) of Λs with a nested sequence of classes of models
Λ1 ⊂ Λ2 ⊂ . . . ⊂ ΛS . For example:

• in linear models, s could be the degree of the polynomial;

• in neural networks, s could be the number of hidden nodes;

• in trees, s could be the maximum depth.

Overfitting occurs when IP is applied to a too complex (i.e. too big) set of models Λs
and underfitting occurs when Λs is too small. The structural identification algorithm IS
solves the outer level of the optimization problem and ranges over different classes of models
{Λs}Ss=1 to select the best one.

Let α̂s be the optimal vector of parameters obtained by ERM on the set Λs. The quantity
G(Λs) measures the average generalization error of the function h(·, α̂s) learned from a given
Λs and from any possible training set d following the distribution of D ∼ FD(d):

G(Λs) = E [R(α̂s)]

= E
[
R(IP (Λs,D))

]

=

∫

ZNd

R(IP (Λs, d)) dFD(d).

(3.7)

In equation (3.7), D is the random variable on which the expectation is computed (see
figure 3.1). The structural identification algorithm IS should select the set minimizing the

22



d IP (Λs, d) α̂s R(α̂s)

d IP (Λs, d) α̂s R(α̂s)

d IP (Λs, d) α̂s R(α̂)

...
...

...

G(Λs) = E [R(α̂s)]

Random
phenomenon
D ∼ FD(d)

Figure 3.1: G is the mean of R computed on h(·, α̂) when an infinite number of training
datasets is available.

Algorithm 1 K-fold cross validation

1: function IScv({Λs}Ss=1, d,K)
2: size block ← bNd/Kc
3: err ← (0, 0, . . . , 0) . Vector of S elements
4: for s← 1 to S do
5: for k ← 1 to K do
6: i1 ← (k − 1)× size block + 1
7: i2 ← k × size block
8: t̃ ← d[i1, i2] . Take samples from index i1 to index i2
9: d̃ ← d \ t̃ . Where ”\” is the set minus operator

10: α̂s ← IP (Λs, d̃)

11: {ŷj}Nt̃
j=1 ← h(xj , α̂s), for all xj ∈ t̃

12: err[s] ← err[s] +
∑Nt̃

j=1 L(yj , ŷj)
13: end for
14: end for
15: ŝcv ← arg mins∈{1,...,S} err[s]
16: return ŝcv

17: end function

generalization error G but, as this quantity is not directly available, G must be estimated.
In an inductive learning context, cross validation (see algorithm 1) is a well-known method,
among many others, to estimate this generalization error.

The cross validation function IScv has three input parameters: (i) a set of S classes of
models, (ii) a training dataset d and (iii) the number of sub samples K. At line 3, a vector
of size S is created. It will contain the cross validation error estimates and it will be used at
line 15 to select the best class of models. The IScv function is composed of two nested loops.
The outer loop (line 4 to 14) goes through all the S classes of models and will compute for
each of them an estimation of G(·). This estimation is done by the inner loop (line 5 to 13).
At line 6 to 9, the training set d is split in two parts following a sliding window approach. Set
t̃ is a validation set containing size block elements and set d̃ is a new training set containing
the Nd − size block other samples. The new training set is used at line 10 to select α̂s by
parametric identification and the hypotheses h(·, α̂s) is evaluated on the validation set at
line 11. At line 12, the error on the validation set is computed and added in the vector err
at position s. After all the loops, the index of the best hyperparameter is selected at line 15
and returned at line 16.
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3.2 The Expectation–Maximization (EM) algorithm

The method that we will discuss in chapter 6 uses an EM algorithm. This is the reason why
we introduce this method in this section. This EM algorithm will be used in chapter 6 to
improve the parametric identification procedure in a transduction learning context where
the new input data are known and with presence of prior probability shift in the dataset.

We consider (O,L) ∼ FOL(o, l|θ), a couple of random variables following a parametric
distribution where θ ∈ Θ is unknown and must be estimated. The variable O is the ob-
servable random variable from which No independent observed realizations are available in
o = {oj}No

j=1. The variable L is called the latent random variable because no samples are
available from it. The Expectation–Maximization (EM) algorithm [12, 32] is a common class
of iterative methods in statistics to find the maximum likelihood estimator in parametric
statistical models where the model depends on unobservable latent random variables.

The goal is to find
θ̂mle ∈ arg max

θ∈Θ
L (θ, o)

where

L (θ, o) =

No∏

j=1

fO(oj |θ)

is the likelihood and where

fO(oj |θ) =

∫
fOL(oj , l|θ)dl

is a marginal distribution4.
Due to the presence of the latent random variable, this maximum likelihood is difficult

to maximize. The EM algorithm starts by initializing θ̂1 ∈ Θ. Then for s = 1, 2, 3, . . ., we
have the following two steps:

E-step: Q(θ|θ̂s) = EL|θ̂s,o [`(θ, (o,L))]

M-step: θ̂s+1 = arg maxθQ(θ|θ̂s)
(3.8)

where ` is the log likelihood function. The E-step computes the expected value of the
log likelihood ` with respect to the conditional distribution of the latent state L given
o and under the current estimate of the parameters θ̂s. The M-step searches the values
that maximize the quantity computed at the E-step. These two steps are repeated until
convergence of θ̂s. Note that it can be shown that the likelihood cannot decrease during the
EM iterations (L (θ̂s+1, o) ≥ L (θ̂s, o)) but the algorithm can easily reach a local maximum
and the convergence can also be slow.

We will now show that the likelihood cannot decrease during the EM iterations [29]
and, for simplicity, let us consider that No = 1 and thus o = {o1}. For any latent random
variable L with distribution fL|O(l|o, θ) where O is the observable random variable and
where θ contains the parameters of the joint probability distribution of (O,L), we can write

`(θ, o1) = log fO(o1|θ)

= log
fOL(o1, l|θ)
fL|O(l|o1, θ)

= log fOL(o1, l|θ)− log fL|O(l|o1, θ)

= `(θ, (o1, l))− log fL|O(l|o1, θ)

(3.9)

4The
∫
dl must be replaced by a

∑
if L is a discrete random variable.
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We will now take the expectation of the log likelihood function ` over possible values of
the unknown variable L under the current estimation of the parameters θ̂s. To do that, we
will multiply both sides of equation (3.9) by fL|O(l|o1, θ̂s) and integrate over L

`(θ, o1)

∫
fL|O(l|o1, θ̂s) dl

︸ ︷︷ ︸
=1

=

∫
fL|O(l|o1, θ̂s) `(θ, (o1, l)) dl

−
∫
fL|O(l|o1, θ̂s) log fL|O(l|o1, θ) dl

= EL|θ̂s,o1 [`(θ, (o1,L))]

−
∫
fL|O(l|o1, θ̂s) log fL|O(l|o1, θ) dl

and we can rewritten the previous equation as

`(θ, o1) = Q(θ|θ̂s) +H(θ|θ̂s)
where Q equals the first expectation in the previous equation and is already defined in equa-
tion (3.8). Note that EM algorithm works by maximizing Q rather than directly improving
L . Function H is defined as the opposite of the integral in the previous equation.

`(θ, o1) holds for any value of θ, including θ = θ̂s and θ = θ̂s+1 where θ̂s+1 is defined in
equation (3.8). Let us subtract `(θ̂s+1, o1) by `(θ̂s, o1)

`(θ̂s+1, o1)− `(θ̂s, o1) = Q(θ̂s+1|θ̂s)−Q(θ̂s|θ̂s) +H(θ̂s+1|θ̂s)−H(θ̂s|θ̂s).
The Gibbs’ inequality [31] tells us that if {p1, . . . , pn} is a probability distribution then

for any other probability distribution {q1, . . . , qn} we have

−
n∑

i=1

pi log pi ≤ −
n∑

i=1

pi log qi

with equality if and only if pi = qi for all i. By Gibbs’ inequality, we know that H(θs+1|θ̂s) ≥
H(θ̂s|θ̂s) and therefore

`(θ̂s+1, o1)− `(θ̂s, o1) ≥ Q(θ̂s+1|θ̂s)−Q(θ̂s|θ̂s).
Furthermore, from equation (3.8), we have Q(θ̂s+1|θ̂s) = maxθQ(θ|θ̂s) and so

Q(θ̂s+1|θ̂s)−Q(θ̂s|θ̂s) ≥ 0

then
`(θ̂s+1, o1)− `(θ̂s, o1) ≥ 0.

The likelihood can therefore not decrease during the EM iterations.

3.2.1 The EM algorithm as a maximization-maximization procedure

In this section, we will present another way [34] to find θ̂mle in case of incomplete information.
Let q(l) ∈ [0, 1] be an arbitrary density function defined on the support of the latent variable
L. If we multiply both sides of equation (3.9) by q(l) and then integrate over l, we obtain

`(θ, o1)

∫
q(l) dl

︸ ︷︷ ︸
=1

=

∫
q(l) log fOL(o1, l|θ) dl −

∫
q(l) log fL|O(l|o1, θ) dl.
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If we add and remove log q(l) on the right hand side of the previous equation, we can write

`(θ, o1) =

∫
q(l) log

fOL(o1, l|θ)
q(l)

dl −
∫
q(l) log

fL|O(l|o1, θ)

q(l)
dl

= F(q(·), θ) +KL(q(·)||fL|O(·|o1, θ))

(3.10)

where KL is the Kullback–Leibler divergence.

Based on the equation (3.10), the EM algorithm can now be seen as a maximization-
maximization procedure [34]. After initialization θ̂1 ∈ Θ and for s = 1, 2, 3, . . ., we have

q maximization: q̂ = arg maxq F(q(·), θ̂s)
θ maximization: θ̂s+1 = arg maxθ F(q̂(·), θ)

The rationale of this procedure is the following. A maximum likelihood estimator θ̂mle
is the value in Θ maximizing the likelihood fO(o1|θ) to observe the realization o1. In
the first step, we search the density function q̂(·) minimizing the KL divergence with the
function5 fL|O(·|o1, θ̂s). Note that F(q(·), θ) equals `(θ, o1) −KL(q(·)||fL|O(·|o1, θ)) where
the log likelihood ` is independent of q and so, maximizing F according to q is equivalent
to minimizing the KL divergence. After the first step, we can now assume that `(θ, o1) ≈
F(q(·), θ) and therefore ` is indirectly maximized by maximizing F . This procedure is
repeated until convergence.

3.3 Adjusting the output of a classifier to a new known a
priori

Let d = {(xi, yi)}Nd
i=1 be a training dataset with iid observations obtained from (X,Y ) ∼

FZ(z) = FXY (x, y) where Y ∈ Y = {ω0, ω1, ω2, . . . , ω|Y|−1}.
It sometimes happens that a classifier model is learned on a set d that does not reflect the

same a priori of the target classes in the testing set t. This mainly comes from shift in the
data distribution where a bias is introduced during the selection of individuals. It happens
for instance in case control studies, during automatic labeling of geographical maps based
on remote sensing information [27] or when the dataset is originally highly unbalanced and
rebalancing methods are used [9].

Many types of shift in the data are possible (section 2.3). In this section, we suppose to
be in presence of prior probability shift where the new marginal probability mass function of
the output variable (i.e. prior) is known. Note that, in chapters 4, 5 and 6, we will suppose
that the new prior is unknown.

When the shift in the data distribution is introduced, we will assume that the prior
probability is changed P (Y = y) 6= P (Ỹ = y) but the within-class probability density
is conserved fX|Y (x|y) = f

X̃|Ỹ (x|y). By doing these assumptions, only the number of

observations from each class has changed but not the input distribution within each class.
This is a reasonable assumption when the sampling bias is introduced by stratifying the
output variable.

Two learning problems are consider is this work: quantification and classification.

5Note that fL|O(·|o1, θ̂s) is known because the distribution is parametric and θ̂s is assumed to be known.
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In a quantification learning context, the goal is to use d and t to estimate the marginal
probability to observe ω from Y in the target environment

P̂ (Ỹ = y).

In a classification learning context, the goal is to use the same two datasets d and t to
estimate the conditional probability g̃ to observe any ω from Y in the target environment
when the testing input xt is given

g̃y(x, α) = P̂ (Ỹ = y|X̃ = xt). (3.11)

Of course, when the new prior is known, it does not make sense to do quantification. That is
why this this chapter only deals with the recalibration problem of the classifier in presence
of prior probability shift.

Let Nω
d =

∑Nd
i=1 I(yi = ω), with I() the indicator function, be the number of observations

in the training set d for which the output value equals ω and of course, we have
∑

ω∈Y N
ω
d =

Nd. We propose the following estimator for P (Y = y):

P̂ (Y = y) = Ny
d /Nd. (3.12)

The value P̂ (Y = ·) is an estimation of the output probability mass function in the source
environment.

The Bayes’ theorem tells us that [38]

f̂
X̃|Ỹ (x|y) =

P̂ (Ỹ = y|X̃ = x) f̂
X̃

(x)

P̂ (Ỹ = y)
.

From equation (3.11) and by the fact that the a priori probability distribution of the testing
set is assumed to be known, we have

f̂
X̃|Ỹ (x|y) =

g̃y(x) f̂
X̃

(x)

P (Ỹ = y)
. (3.13)

The Bayes’ theorem tells us also that

f̂X|Y (x|y) =
P̂ (Y = y|X = x) f̂X(x)

P̂ (Y = y)

and from equations (3.4) and (3.12), we have

f̂X|Y (x|y) =
gy(x) f̂X(x)

Ny
d /Nd

. (3.14)

By assuming that the within-class probability density is conserved, we can impose equal-
ity between both estimations in equations (3.13) and (3.14):

g̃y(x) f̂
X̃

(x)

P (Ỹ = y)
=
gy(x) f̂X(x)

Ny
d /Nd

⇔ g̃y(x) = gy(x)
P (Ỹ = y)

Ny
d /Nd

f̂X(x)

f̂
X̃

(x)
.
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Note that concretely it is in the previous step that the transfer of knowledge from the
source environment to the target environment is performed. By assuming prior probability
shift, the within-class probability density is conserved and, by imposing equality between
the two within-class probabilities, we ’transfer’ the within-class probability from the source
environment to the target one.

Since
∑

y∈Y g̃y(x) = 1, we have

f̂X(x)

f̂
X̃

(x)

∑

y∈Y
gy(x)

P (Ỹ = y)

Ny
d /Nd

= 1

⇔ f̂X(x)

f̂
X̃

(x)
=


∑

y∈Y
gy(x)

P (Ỹ = y)

Ny
d /Nd



−1

and so we get the following equation

g̃y(x) =
gy(x)P (Ỹ=y)

Ny
d /Nd

∑
y∈Y gy(x)P (Ỹ=y)

Ny
d /Nd

=
gy(x)ρ̃y∑
y∈Y gy(x)ρ̃y

(3.15)

with ρ̃y = P (Ỹ = y)/ (Ny
d /Nd) and where all the terms are known: gy(x) is the a posteriori

probability of the predictive model learned with the training dataset d, P (Ỹ = y) is the new
a priori probability distribution of the testing set that is assumed to be known, Ny

d is the
number of samples in the training set where the output modality equals y and Nd is the total
number of training samples. This formula can be used in order to compute the a posteriori
probability g̃y(x) in the testing set. We observe that the correction of the a posteriori g̃y(x)

is simply the output provided by the model gy(x) weighted by the ratio P (Ỹ=y)

P̂ (Y=y)
and the

denominator is only there to ensure that
∑

y g̃y(x) = 1.

Example – Binary classification

As an illustration, let us consider d a set containing 2000 realizations from the following
simple synthetic classification problem where

X ∼ Unif(−2, 2)

with

(Y |X = x) =

{
ω1, if x+ ε > 0

ω0, else
, and with ε ∼ N(0, 1/4).

For the modeling purpose, let us consider the family of logistic models

gy=ω1(x) =
exp(α0 + α1x)

1 + exp(α0 + α1x)

where Λ = {(α0, α1)} ∈ R2 is the set of parameters.
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Figure 3.2: Example of an easy synthetic binary classification problem with only one input
variable. Upper left: the predictive model obtained from the original training data before
prior probability shift. Upper right: the predictive model obtained from the training data
after prior probability shift and without recalibration. Lower: the predictive model obtained
after recalibration.

If we apply the parametric identification algorithm IP (Λ, d), we obtain the predictive
machine learning model shown in the upper left figure of 3.2 where the blue points are
the training observations, the two black dashed lines are the model and the vertical blue
lines correspond to the threshold obtained from the Bayes’ decision rule (equation (3.3)).
In our case, training set d contains 993 observations where the target equals ω1 and 1007
observations where the target equals ω0. As expected from the definition of the synthetic
classification problem, we can see that the threshold is close to zero.

We will now change the distribution by removing at random 90% of observations from
d where the target values equals ω1. After removing these samples, the new training set
contains only 99 observations with ω1 and still 1007 observations with ω0. After identification
of the parameters with the new training set we obtain a new model shown in the upper right
part of figure 3.2. As expected, the Bayesian decision threshold has moved (biased) to the
right.

As we can see at the lower part of figure 3.2, if we apply equation (3.15) with P (Ỹ =
ω0) = 1007/2000, P (Ỹ = ω1) = 993/2000, Nω0

d = 1007, Nω1
d = 99 and Nd = 1106, we

correct the bias that we had introduced.

Note that the above transformation defined in equation (3.15) will not affect the rank-
ing produced by gy(x) [10]. This is confirmed experimentally in this example because the
ordering of testing samples sorted according to gy(x) and g̃y(x) is the same in both cases.
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Figure 3.3: Example of an synthetic multi class classification problem with one input vari-
able. Upper left: the predictive model obtained from the original training data before prior
probability shift. Upper right: the predictive model obtained from the training data after
prior probability shift and without recalibration. Lower: the predictive model obtained after
recalibration.

Example – Multiclass classification

Let us now consider the following multiclass classification problem where Y = {ω0, ω1, ω2, ω3}:
X ∼ Unif(−2, 2) (3.16)

with

(Y |X = x) =





ω0, if x+ ε ∈ [−2,−1[

ω1, if x+ ε ∈ [−1, 0[

ω2, if x+ ε ∈ [0, 1[

ω3, if x+ ε ∈ [1, 2]

, and with ε ∼ N(0, 0.01). (3.17)

The top left of figure 3.3 shows four conditional probability distributions P̂ (Y = ·|X =
x) obtained when the original training dataset from the source environment is used for
parametric identification on the logistic regression models. The original training dataset
contains the following numbers of observations of each class: 252 observations from ω0, 248
observations from ω1, 253 observations from ω2 and 247 observations from ω3, which gives
us a total of 1000 observations in the training set.

To simulate shift in the data, the number of observations in ω1 is reduced from 248 to
24 and the number of observations of the other output modalities remains the same. The
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top right of figure 3.3 shows the four new conditional distributions. As we can see, the
conditional probability to observe ω1 (green curve) completely collapsed.

The algorithm (3.15) is then used on the four previous conditional distributions and the
corrected distributions are displayed on the bottom of 3.3. If we compare this figure with
the first one at the top left, we can observe that the algorithm corrected the bias rather well.
The distribution in the middle has slightly inflated (i.e. larger variance) but it’s remarkable
to see how much it recovers the positions of the intersections between the curves. These are
important information because they are used to make Bayesian decisions about the class
membership of new observations.

Note that, on each figure of 3.3, the training set is displayed on the top. On the figure
at the top left, it is the original set that is displayed. In the other two figures, we can see
that, after subsampling, the number of observations of ω1 (green points) is reduced.

3.3.1 Adjusting the bias term of a CPE classifier to a new known a priori

This section contains a contribution were the bias term of a CPE classifier is directly ad-
justed to the a new known a priori after a prior probability shift. This contribution is largely
inspired a method introduced in a still unpublished paper Adjusting the Bias Term of Clas-
sifiers to Unknown Prior written by Prof. Marco Saerens and Prof. Christine Decaestecker.

We consider the case of adjusting the bias term of a CPE classifier with a softmax
nonlinear function.

Let us assume that, after a parametric identification on Λ with d,

gy(x) = P̂ (Y = y|X = x)

=
exp

[
(α̂y)Tγ(x) + α̂y0

]
∑

y∈Y exp [(α̂y)Tγ(x) + α̂y0]

returns an estimation of the probability that the input x belongs to class y where the vectors
(α̂y)T = (α̂y1, α̂

y
2, . . . , α̂

y
d′) and the scalars α̂y0 are identified during the parametrization step

and where α̂y0 is the bias term.

The function γ : Rd → Rd′ is a generic function which transforms the original features.
This is also identified during the learning phase. For instance, if gy(x) is estimated by a
multilayer neural network perceptron then the γ transformation corresponds to the trans-
formation done by the hidden layers of the neural network.

If the output contains |Y| modalities then the predictive model contains |Y|−1 functions
gy(x) in such a way that





gω0(x) = P̂ (Y = ω0|X = x)
...

gω|Y|−2
(x) = P̂ (Y = ω|Y|−2|X = x)

It should be noted that the last function gω|Y|−1
must not be estimated since, for a given x,

the sum of the conditional probabilities must be equal to one. Therefore the last function
is defined as

gω|Y|−1
(x) = 1−

|Y|−2∑

k=0

gωk(x).
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The predictive model is built with d and is therefore calibrated to fit the training envi-
ronment. But, as we assume the possibility to have a prior probability shift in the data, the
testing environment changes. Therefore, the training and testing realizations are assumed
to be generated from respectively X,Y and X̃, Ỹ where (of course) the output of the testing
set is not observable.

We assume that the predictive model in the target environment is also of the softmax
form

g̃y(x) = P̂ (Ỹ = y|X̃ = x)

=
exp

[
(α̃y)Tγ(x) + α̃y0

]
∑

y∈Y exp [(α̃y)Tγ(x) + α̃y0]
.

(3.18)

The adjustment problem can be formulated as follows. Based on d generated from X and Y ,
α̂y and α̂y0 are estimated via IP . Let F

X̃Ỹ
(x, y) be the distribution in the testing environment

where it is assumed that there was a prior probability shift between the training and testing.
Let t be the testing set generated from X̃. The question is how to use t to adjust the
parameters α̂y and α̂y0 to the new testing environment?

From equation (3.15) at page 28,

g̃y(x) =
gy(x)ρ̃y∑
y∈Y gy(x)ρ̃y

=
exp

[
(α̂y)Tγ(x) + α̂y0

]
ρ̃y∑

y∈Y exp [(α̂y)Tγ(x) + α̂y0] ρ̃y

=
exp

[
(α̂y)Tγ(x) + α̂y0 + ln(ρ̃y)

]
∑

y∈Y exp [(α̂y)Tγ(x) + α̂y0 + ln(ρ̃y)]
.

(3.19)

If we compare the previous result with equation (3.18), we get the following adjustment
rule: {

α̃y = α̂y

α̃y0 = α̂y0 + ln
(
P (Ỹ = y)

)
− ln

(
P̂ (Y = y)

) (3.20)

where α̃y and α̃y0 are the softmax parameters in the testing environment, where α̂y and α̂y0
are the softmax parameters in the training environment and where P̂ (Y = y) = Ny

d /Nd.
This formula shows us how to adjust the parameters of a CPE model when a softmax is used
at the output and when prior probability shift occurs in the data. As we can see, only the
bias term must be adjusted. The other terms remain unchanged. The bias term adjustment
is function of:

• the new prior probability in the testing set P (Ỹ = y) that we assume to be known and

• the prior probability in the training set estimated by P̂ (Y = y) = Ny
d /Nd.

Example

In this example, a logistic function is considered and the equation (3.20) will be used to
adjust the bias term of the predictive model. We will reuse the same synthetic problem
described in equations (3.16) and (3.17) at page 30. This synthetic problem is used to
generate the same observations as at page 30: 252 observations from ω0, 248 observations
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Figure 3.4: The predictive model obtained after recalibration of the bias term.

from ω1, 253 observations from ω2 and 247 observations from ω3, which gives us a total
of 1000 observations in the training set. To simulate shift in the data, the number of
observations in ω1 is reduced from 248 to 24; and the number of observations of the other
output modalities remains the same (figure 3.3 at page 30).

After parametric identification, we get the following coefficients (for y ∈ {ω0 . . . ω3}):

α̂y0 = (−0.35057895, 1.1672324, 3.1596501, −3.97630355)T

and
α̂y1 = (−5.90421903, −2.34167341, 0.58800961, 7.65788282)T .

As, for y ∈ {ω0 . . . ω3}, we have P (Ỹ = y) = (0.25, 0.25, 0.25, 0.25)T and

P̂ (Y = y) = (0.32474227, 0.03092784, 0.32603093, 0.31829897)T ,

the four adjustment values ln
(
P (Ỹ = y)

)
− ln

(
P̂ (Y = y)

)
are

(−0.26157093, 2.08980433, −0.26553133, −0.24153018)T .

If we use these adjustment values in equation (3.20), we get the following new coefficients

α̃y0 = (−0.61214988, 3.25703673, 2.89411877, −4.21783373)T

and
α̃y1 = (−5.90421903, −2.34167341, 0.58800961, 7.65788282)T .

Note that only the bias terms are adjusted. Figure 3.4 shows the four new adjusted functions
g̃y(x). These curves are exactly the same as in the bottom of figure 3.3 at page 30, that
shows that the algorithm (3.20) is a valid way to correct the distributions after a prior
probability shift when the new prior is known.
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Chapter 4

The adjusted classify and count
(ACC) approach for prior
probability shift

Let d = {(xi, yi)}Nd
i=1 be a training dataset with iid observations obtained from (X,Y ) ∼

FZ(z) = FXY (x, y) where Y ∈ Y = {ω0, ω1, ω2, . . . , ω|Y|−1}.
We assume to be in a transductive transfer learning context where input testing data are

known in advance. In order to distinguish between the training and testing populations, we
will now say that the testing observations in t are coming from F

X̃Ỹ
(x, y) where Ỹ is latent.

In this work, we address the problem where the class distribution changes and only
unlabeled data are available from the new testing population. We will now study ways to
correct the conditional probability predictions for this target environment when we assume
to be in state of complete ignorance about the new a priori probability. Therefore we must
simultaneously both estimate P (Ỹ = y) (quantification problem) and correct the conditional
probability (classification problem).

Different quantification methods have been proposed in the scientific literature. In this
section, we study the adjusted classify and count (ACC) approach [16], also known as the
confusion matrix approach [38].

4.1 The confusion matrix

The confusion matrix [11, 36] is typically used in machine learning to evaluate the perfor-
mance of a predictive model in a supervised classification learning context. Let

υ(ωj , ωk) =

N∑

i=1

I [h(xi, α) = ωk ∧ yi = ωj ]

be a function counting the number of times that the model predicts ωk when the true class
is ωj where I is the indicator function which equals 1 if the proposition inside the bracket
is true otherwise I returns 0.

The confusion matrix is a square matrix reporting all these υ values in such a way that
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the rows represent the actual class of the instances and the columns their predicted class:



υ(ω0, ω0) υ(ω0, ω1) · · · υ(ω0, ω|Y|−1)

υ(ω1, ω0) υ(ω1, ω1) · · · υ(ω1, ω|Y|−1)
...

...
. . .

...
υ(ω|Y|−1, ω0) υ(ω|Y|−1, ω1) · · · υ(ω|Y|−1, ω|Y|−1)


 .

We define
P (h(X|α) = ωk|Y = ωj)

as the probability that the model h(·|α) predicts ωk when the true class is ωj . Based on the
values in the confusion matrix, this probability can be estimated as follows:

P̂ (h(X|α) = ωk|Y = ωj) =
P̂ (h(X|α) = ωk, Y = ωj)

P̂ (Y = ωj)

=
υ(ωj , ωk)∑

ωk∈|Y| υ(ωj , ωk)
.

(4.1)

Note that if |Y| = 2 and if ω0 is the positive class then

[
#TP #FN
#FP #TN

]
=

[
υ(ω0, ω0) υ(ω0, ω1)
υ(ω1, ω0) υ(ω1, ω1)

]
.

and

P̂ (h(X|α) = ω0|Y = ω0) =
#TP

#TP + #FN
= true positive rate (recall)

P̂ (h(X|α) = ω1|Y = ω1) =
#TN

#FP + #TN
= true negative rate

P̂ (h(X|α) = ω0|Y = ω1) =
#FP

#FP + #TN
= false positive rate

P̂ (h(X|α) = ω1|Y = ω0) =
#FN

#TP + #FN
= false negative rate.

4.2 The ACC approach

Let P (h(X̃|α) = ωk) be the marginal of classifying an observation from the testing target
environment in class ωk. Note that this quantity can be easily estimated by applying the
predictive model h on the testing set t and then by counting the number of occurrences of
each modality.

P̂ (h(X̃|α) = ωk) =

∑Nt
i=1 I

[
h(xti, α) = ωk

]

Nt
.

According to the law of total probability, we have

P (h(X̃|α) = ωk) =

|Y|∑

j=1

P (h(X̃|α) = ωk|Ỹ = ωj) P (Ỹ = ωj) (4.2)

In the previous equation, P (Ỹ = ωj) is the prevalence of the output variable in the testing
environment. It is this probability that we try to estimate in quantification learning. As
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we already mentioned, the probability P (h(X̃|α) = ωk) can easily be estimated. The only
missing term in (4.2) is the conditional probability P (h(X̃|α) = ωk|Ỹ = ωj).

As we suppose prior probability shift between (X,Y ) and (X̃, Ỹ ), we assume that the
within-class probability density is conserved

fX|Y (x|ωj) = f
X̃|Ỹ (x|ωj) (4.3)

and, if the classifier h is applied on the input random variables X in the previous equation,
we obtain

P (h(X|α) = ωk|Y = ωj) = P (h(X̃|α) = ωk|Ỹ = ωj).

By using the previous equality with equation (4.2), we have

P (h(X̃|α) = ωk) =

|Y|∑

j=1

P (h(X|α) = ωk|Y = ωj) P (Ỹ = ωj) (4.4)

where the conditional probability can now be estimated via the equation (4.1). As this
estimate must done on an other dataset than the training set, cross validation (algorithm
1 at page 23) is used. Note that equation (4.4) is about solving a system of |Y| equations
where P (Ỹ = ωj) are the unknown variables.

The main issue with this method is that in practice the result of the probabilities P (Ỹ =
ωj) can turn out to be negative or greater than one [42]. This can happen for one or more
of the following reasons:

• The shift in the dataset is in fact not prior probability shift, i.e. (4.3) does not hold.

• The cross-validation estimates of the confusion matrix is inaccurate. Note that it is
known that the cross-validation estimate is a bias estimator for the prediction accu-
racy [46].

• The estimation of the scoring function h(·, α) may be inaccurate.

In the next section, we will propose as contribution a method that solve the ACC method
by a quadratic programming method with constraints that will require a solution that meets
the definition of distribution, i.e. all positive values and sum equals to one.

We also notice that, for the resolution of the system, we often obtain a singular matrix
and thus the inverse of this matrix does not exist. This is especially the case when, after the
data shift, the prevalence of Y in the testing environment is very low. In this case, it easily
happens that a column of the confusion matrix is null and therefore the matrix is singular
(e.g. confusion matrix at equation (4.6) page 40).

4.3 Solving the ACC method by a quadratic program with
constraints

We will reformulate the equation (4.4) as a quadratic program with constraints. The con-
straints ensure to have a solution that meets the definition of distribution (i.e. all the values
must be positive and the sum must equal one).
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To simplify the notation, we will rewrite the equation (4.4) in a matrix form. If M ∈
R|Y|×|Y|, p ∈ R|Y| and v ∈ R|Y| then (4.4) can be rewritten as

v = M p

where p = (P (Ỹ = ω0), . . . , P (Ỹ = ω|Y|))
T is the vector that must be estimated. We search

a vector p̂ that respects the constraints such that v ≈M p̂ ⇔ (M p̂− v) ≈ 0. This can be
represented as the following quadratic minimization problem with constraints:

p̂ = arg min
p∈R|Y|

q(p)

subject to: P̂ (Ỹ = ω) ≥ 0, ∀ω ∈ Y
∑

ω∈Y
P̂ (Ỹ = ω) = 1

where

q(p) =
1

2
‖Mp− v‖2

=
1

2
(Mp− v)T (Mp− v)

=
1

2
(pTMT − vT )(Mp− v)

=
1

2
(pTMTMp− pTMT v − vTMp+ vT v)

=
1

2
pT MTM︸ ︷︷ ︸

D

p− vTM︸ ︷︷ ︸
BT

p

=
1

2
pTD p−BT p.

In the previous equation, the scalar vT v is removed from the optimization problem because
it does not depend on p. Note that the constraints can also be rewritten in matrix form

P̂ (Ỹ = ω) ≥ 0, ∀ω ∈ Y ⇔ I︸︷︷︸
A≥

p̂ ≥ ~0︸︷︷︸
C≥

and ∑

ω∈Y
P̂ (Ỹ = ω) = 1 ⇔ ~1T︸︷︷︸

A=

p̂ = 1︸︷︷︸
C=

where I is the |Y| × |Y| identity matrix (i.e. diagonal matrix with ones on the diagonal)
and, ~0 = (0, . . . , 0)T and ~1 = (1, . . . , 1)T are two vectors of size |Y| with respective zeros
and ones.

In our experiments (chapter 7), to solve this quadratic program with constraints, we
used the solve qp function from the Python module quadprog. This function takes as input
(D , B, A≥, C≥, A=, C=) and returns p̂.

4.4 Example – Binary classification

As an illustration, we will reuse the same binary classification problem that we have already
defined at page 28. The training set d contains 999 observations from ω0 and 1001 observa-
tions from ω1. The dataset d is used to learn a logistic predictive model (like in the top left
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of figure 3.2). If we evaluate the predictive model by K = 5 cross validation, we obtain the
following confusion matrix: [

889 110
115 886

]

and with equation (4.1), we have

[
0.88988989 0.11011011
0.11488511 0.88511489

]
.

This gives us estimations for P (h(X|α) = ωk|Y = ωj).

The testing set is generated with the same random process as for the training set but,
to simulate prior probability shift, observations from ω1 are randomly removed. The testing
dataset t is composed of 1010 observations from ω0 and only 99 observations from ω1, that
is to say P (Ỹ = ω0) ≈ 0.91073 and P (Ỹ = ω0) ≈ 0.08927. If we apply the predictive model
learned with d on the testing set t, we obtain the following estimation of P (h(X̃|α) = ωk):
912/1109 and 197/1109 for respectively ω0 and ω1.

This gives us the following system of two linear equations:





P̂ (h(X̃|α) = ω0) = P̂ (h(X|α) = ω0|Y = ω0)P̂ (Ỹ = ω0) + P̂ (h(X|α) = ω0|Y = ω1)P̂ (Ỹ = ω1)

P̂ (h(X̃|α) = ω1) = P̂ (h(X|α) = ω1|Y = ω0)P̂ (Ỹ = ω0) + P̂ (h(X|α) = ω1|Y = ω1)P̂ (Ỹ = ω1)

m




912/1109 = 0.88988989 P̂ (Ỹ = ω0) + 0.11488511 P̂ (Ỹ = ω1)

197/1109 = 0.11011011 P̂ (Ỹ = ω0) + 0.88511489 P̂ (Ỹ = ω1)

m
[

0.822
0.178

]
=

[
0.88988989 0.11488511
0.11011011 0.88511489

][
P̂ (Ỹ = ω0)

P̂ (Ỹ = ω1)

]

m
[

1.1420767 −0.1482379
−0.1420767 1.1482379

] [
0.822
0.178

]
=

[
0.91287
0.08713

]
=

[
P̂ (Ỹ = ω0)

P̂ (Ỹ = ω1)

]

The estimation of the prevalence of the output in the testing environment (0.91287,
0.08713) is very close to real prevalence (0.91073 and 0.08927). Note that in this case, the
solution of the linear equation provides a valid solution (i.e. 0.91287 > 0, 0.08713 > 0 and
0.91287 + 0.08713 = 1 ), therefore it was not necessary to use the constraints.

4.5 Example – Multiclass classification

Let us now consider the same multiclass classification problem already defined at page 30
but where the output prevalence in the testing P (Ỹ = ·) is now assumed to be unknown.
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The training dataset contains 776 observations: 252 observations from ω0, 24 observations
from ω1, 253 observations from ω2 and 247 observations from ω3.




P̂ (Y = ω0)

P̂ (Y = ω1)

P̂ (Y = ω2)

P̂ (Y = ω3)


 =




0.3247
0.0309
0.3260
0.3183


 (4.5)

The dataset d is used to learn a logistic predictive model. A testing set with 1000 observations
is also available: 249 observations from ω0, 255 observations from ω1, 242 observations from
ω2 and 252 observations from ω3. The unknown four prevalences of Y in the testing set
equal almost 0.25. It is these values that the algorithm ACC will have to estimate.

If we evaluate the logistic function by K = 5 cross validation, we obtain the following
confusion matrix: 



252 0 0 0
15 0 9 0
0 0 230 23
0 0 2 245


 (4.6)

and with equation (4.1), we have




1 0 0 0
0.625 0 0.375 0

0 0 0.90909091 0.09090909
0 0 0.00809717 0.99190283


 .

As the determinant of the last matrix is null, this matrix cannot be inversed and therefore
the system of equations defined in (4.4) cannot be solved. Meaning that in some cases, the
ACC algorithm can just not be applied.

We tried to replace, on the same problem, the logistic model by a random forest and,
with a K = 5 cross validation, we obtained the following confusion matrix:




248 4 0 0
4 14 7 0
0 4 241 8
0 0 12 235




and with equation (4.1), we had




0.98412698 0.01587302 0 0
0.125 0.58333333 0.29166667 0

0 0.01581028 0.95256917 0.03162055
0 0 0.048583 0.951417


 . (4.7)

If we apply the predictive model learned with d on the testing set t, we obtain:




P̂ (h(X̃|α) = ω0)

P̂ (h(X̃|α) = ω1)

P̂ (h(X̃|α) = ω2)

P̂ (h(X̃|α) = ω3)


 =




0.28
0.18
0.289
0.251


 . (4.8)
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Note that equation (4.8) gives a naive estimation of the prevalence when the predictive
model is used without adjustment1.

By solving equation (4.4) with (4.7) and (4.8), we obtain the following estimation of the
prevalence of Y in the testing set




P̂ (Ỹ = ω0)

P̂ (Ỹ = ω1)

P̂ (Ỹ = ω2)

P̂ (Ỹ = ω3)


 =




0.28288341
0.1012286
0.2934499
0.24883235


 . (4.9)

We know that the true prior in the testing set equals 0.25 for the four classes. Compared with
(4.5), the previous equation corrected the distribution of Y in the target environment slightly
but we are still far from the true distribution (i.e. P (Ỹ = ωk) = 0.25, for k = 1, . . . , 4).
Note even that the probabilities in (4.9) do not sum to one.

If we apply the method based on the resolution of a quadratic program, described in
section 4.3, we obtain, for the same problem, the following estimation of the prevalence in
the testing environment




P̂ (Ỹ = ω0)

P̂ (Ỹ = ω1)

P̂ (Ỹ = ω2)

P̂ (Ỹ = ω3)


 =




0.2945241
0.1385011
0.3005869
0.2663878


 .

Compared with the original prior probability in (4.5), there is a correction of the preva-
lence in the target environment. As expected, the four probabilities are closer to their target
0.25 but the correction remains relatively weak. It should be noted that the naive approach
(i.e. base) remain better

1In the experimental chapter 7, for the estimation of the prior in t, this method of using the predictive
model learned on d without any adjustment is named ”base”.
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Chapter 5

The class distribution estimation
(CDE-iterate) approach for prior
probability shift

Let d be a training dataset with Nd iid observations drawn from (X,Y ) ∼ FZ(z) = FXY (x, y)
where Y is a discrete random variable and let t be a testing dataset with Nt iid observations
coming from F

X̃Ỹ
(x, y) where Ỹ is a discrete latent random variable. We assume also the

presence of a change in the marginal probability of the output where the new prevalence of
the output variable in the testing environment is unknown.

In this section we will present the class distribution estimation (CDE) method [48] to do
the quantification. As we will see, the algorithm proposed in [48], can only deal with binary
classification problems. Let us consider a binary classification task (i.e. |Y| = 2), where the
confusion matrix is a 2× 2 matrix:

[
#TP #FN
#FP #TN

]
.

The following terms can be defined from the confusion matrix:

• Positive rate pr = (#TP + #FN)/(#TP + #FN + #FP + #TN)

• Negative rate nr = (#FP + #TN)/(#TP + #FN + #FP + #TN)

• Distribution mismatch ratio dmr = (pr/nr) : (p̃r/ñr)

• True positive rate tpr = #TP/(#TP + #FN)

• False positive rate fpr = #FP/(#FP + #TN)

where the tilde symbol (˜ ) is used to denote the values associated with the new testing
environment.

Let us consider for example that the dataset from the original training distribution has
900 positive examples and 100 negative examples (pr = 0.9, nr = 0.1) and the new testing
dataset has 200 positive and 800 negative examples (p̃r = 0.2 and ñr = 0.8). In our example,
we have dmr = 9 : (1/4) = 36 : 1. Based on the ratio of the positive rate to the negative
rate, the positives are 36 times more frequent in the training environment than in the testing
one.
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Algorithm 2 CDE-iterate

1: function CDE-iterate(d, t,Λ, nb loops)
2: α̂ ← IP (Λ, d)
3: for i← 1 to nb loops do
4: {ŷj}Nt

j=1 ← {h(xj , α̂) | ∀xj ∈ t}
5: ̂̃pr/ñr ← Use the predictions {ŷj}Nt

j=1 to estimate p̃r/ñr

6: costFP ← p̂r/nr : ̂̃pr/ñr . Note that if costFN = 1 then costFP = dmr.
7: α̂ ← IP (Λ, d, costFP , costFN = 1) . Cost sensitive parametric identification [15].
8: end for

9: P̂ (Ỹ = ω1) ← ̂̃pr/ñr
̂̃pr/ñr+1

10: return α̂, P̂ (Ỹ = ω1)
11: end function

As the output distribution changes between the training and the testing, it is needed to
recalibrate the predictive model. It is possible to do this recalibration during the parametric
identification step [15] in different ways:

• Resample (or reweight) the training examples to change the class distribution to match
the new testing distribution.

• Adapt the thresholds used to decide the class label.

• Change the ratio of misclassification costs between false positive and false negative
predictions.

In the original paper presented in [48], it is the third method that is used and the following
equation determines the costs ratio between false positive and false negative predictions:

costFP
costFN

=
pr/nr

p̃r/ñr
= dmr. (5.1)

Considering our example, the costs ratio:

costFP : costFN = 36 : 1 ⇔ costFP = 36× costFN .

Note that if costFN is fixed to 1, then costFP = dmr (this property will be used in algo-
rithm 2).

Let us assume that ω1 is the positive class, where P (Ỹ = ω1) is the new unknown
prevalence in the testing set. In this case, we have the following ratio between the positive
rate and the negative rate in the testing environment

p̃r/ñr =
P (Ỹ = ω1)

1− P (Ỹ = ω1)
.

Since the output values of the test observations are unknown, the probability P (Ỹ = ω1)
can not be directly estimated without quantification learning and therefore p̃r/ñr is also
unknown.

The method CDE-iterate is an iterative algorithm and its pseudo-code is given in algo-
rithm 2. The input of the CDE-iterate functions are (i) a training dataset, (ii) a testing
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Figure 5.1: Evolution of the prior probabilities during the ten first iterations of the CDE
algorithm.

dataset, (ii) a set of predictive models and (iv) the number of iterations of the main loop.
At line 2, the training dataset is used to create an initial predictive model (equation (3.6)
at page 22). The main loop is between lines 3 and 8. At line 4, the predictive model h(·, α̂)
is applied on the testing set. Let1 Nω1

t and Nω0
t be respectively the number of positive and

negative predictions done on the testing observations {ŷj}Nt
j=1. At line 5, ̂̃pr/ñr is estimated

by Nω1
t /Nω0

t . Line 6 makes an estimation of the distribution mismatch ratio (drm) where

p̂r/nr is estimated from the training set d. Note that, as we assume costFN = 1, we have
drm = costFN . A cost sensitive learning algorithm is used at line 7 where the false nega-
tive cost was computed at the previous line and the false positive cost is fixed at 1. Note
that the experiences done in this work are implemented in Python and, unfortunately, no
implementation of a cost sensitive algorithm is available in Python2. That is why, we had
to adjust from scratch a classical learning algorithm for cost sensitive learning. At the end
of iterations of the main loop, line 9 computes the estimation of the new prevalence of the
positive class ω1. Note that, as we assume to be in a binary classification setting, we have
P̂ (Ỹ = ω0) = 1− P̂ (Ỹ = ω1). At the last line, the function returns the last generated model
and the estimation of the prevalence.

It is interesting to note that this algorithm can be applied on non CPE models. It means
that rather than correcting the conditional probability, this algorithm makes the correction
at the level of the decision.

The CDE method proposed in [48] is applicable only for binary classification problems
and this is due to the fact that equation (5.1) is valid only when |Y| = 2. To adapt the CDE
methods to multiclass problems, it is needed to adapt equation (5.1) when |Y| > 2. We did
not find this extension in the scientific literature.
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5.1 Example – Binary classification

We reused the same simple binary classification problem that we already used at page 28
and in section 4.4 at page 38. Figure 5.1 shows the evolution of the estimation P̂ (Ỹ = ω1)
during the 10 first iterations of the CDE algorithm where the horizontal dotted line is the
target true distribution of the output variable in the testing environment.

As we can see, at the initialization step, P̂ (Ỹ = ω1) is close to 0.5 which is the prevalence
of Y = ω1 in the training environment. Then the algorithm quickly reduces the value of the
estimate and reached a stable value after step 3. As we can see, the algorithm has a little
underrated the new probability in the testing environment.

5.2 The CDE-iterate approach is not a Fisher’s consistency
estimator

Fisher consistency is a desirable property for an estimator. Roughly speaking, it requires
that if the whole population of a random variable is available then this estimator should
give exactly the right answer.

The three estimators studied in this work (ACC, CDE and EM 3) have been analyzed
in [42]. The author found that ACC and EM are Fisher’s consistent but a counter-example
shows that CDE is not consistent.

Although Fisher’s consistency gives no idea of the magnitude of the errors that an esti-
mator will do when a given finite set of observations is available, the author of [42] argues
that Fisher’s consistency could be used as a criterion to reject estimators that are unlikely
to provide good estimates in the test environment after prior probability shift. Being con-
sistency is not a sufficient criterion for a quantification algorithm to be useful but, according
to the author of [42], lack of consistency should be considered as a good reason to revoke
an estimator because, even with a very huge dataset, lack of Fisher’s consistency does not
guarantee to have a good estimate. As CDE is not Fisher’s consistent, it cannot be trusted
to deliver reliable estimates of the prevalence in the testing environment.

It must be mentioned that even if the CDE estimator is not consistent, in the exper-
imental chapter 7, we will see that empirically the CDE estimator is not worse than the
other methods (when |Y| = 2).

1Assuming that ω1 stands for positive and ω0 stands for negative.
2We only found “COSTCLA: A Cost-Sensitive Classification Library in Python” but the code is no longer

maintained and is not compatible with the current version of Python 3.5.2.
3The EM algorithm will be presented in the next chapter.
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Chapter 6

The expectation-maximization
(EM) approach for prior
probability shift

6.1 Adjusting the output of a CPE classifier in presence of a
Prior Probability Shift

In this section, largely inspired by [38], we will assume to be in a classification context where
d = {(xi, yi)}Nd

i=1 is a training dataset with iid observations obtained from (X,Y ) ∼ FZ(z) =
FXY (x, y) where Y ∈ Y = {ω0, ω1, ω2, . . . , ω|Y|−1}.

6.1.1 Adjusting the output of a classifier to a new unknown a priori

We assume that the new a priori probability distribution of the testing set P (Ỹ = y) is
unknown. In this case, equation (3.15) at page 28 cannot be directly applied. This section
presents an EM iterative algorithm (section 3.2) for the a posteriori g̃y(x) adjustment where

Ỹ is the latent variable and where X̃ is the observable variable from which Nt realizations
are available in the testing set t.

The distribution of the new testing observations is

fT (t) =

Nt∏

j=1

f
X̃

(xtj)

=

Nt∏

j=1


∑

y∈Y
f
X̃|Ỹ (xtj |y) P (Ỹ = y)




=

Nt∏

j=1


∑

y∈Y
fX|Y (xtj |y) P (Ỹ = y)




where Ỹ is the latent unknown random variable. The last line of the previous equation
is obtained by assuming that the within-class probability density is conserved, since we
assume that only the a priori probability changes from the training set to the new testing
set. Roughly speaking, in the last line of previous equation, we have ’transferred’ the

47



information about the within-class probability density from the source environment to the
target environment. In the previous equation, fX|Y (x|y) can be estimated from the training
dataset via density estimation techniques and generative machine learning models [25] but
P (Ỹ = ·) remains unknown. The goal of the iterative EM algorithm is to estimate all the a
priori probabilities P (Ỹ = ·) of the latent random variable (quantification).

As before, let gy(x) be the output of a class probability estimate (CPE) model (equa-
tion (3.4)) built on the training set d. For iteration number s of the EM procedure, let us

define P̂s(Ỹ = y) and g̃
(s)
y (x) = P̂s(Ỹ = y|X̃ = x) as respectively the estimations of the new

a priori and the new a posteriori. If P̂s(Ỹ = y) for s = 1 is initialized by the a priori of the
training set (equation (3.12))

P̂s=1(Ỹ = y) = Ny
d /Nd

then, according to [38], for s = 1, 2, 3, . . . the EM method provides the two following steps
for each testing observation xtj and each class ω:

g̃(s)
y (xtj) =

gy(x
t
j)
P̂s(Ỹ=y)
Ny

d /Nd

∑
y∈Y gy(x

t
j)
P̂s(Ỹ=y)
Ny

d /Nd

; ∀xtj ∈ t and ∀y ∈ Y

P̂s+1(Ỹ = y) = (Nt)
−1

Nt∑

j=1

g̃(s)
y (xtj); ∀y ∈ Y.

(6.1)

Note, from (6.1), we can see that if

P̂s=1(Ỹ = y) = Ny
d /Nd

then
g̃(s=1)
y (xtj) = gy(x

t
j)

and so,

P̂s=2(Ỹ = y) = (Nt)
−1

Nt∑

j=1

gy(x
t
j); ∀y ∈ Y.

In step s = 2, we find an estimate of the prior that is using the output of the original
model gy applied on the test set t. It is possible to initialize the algorithm by the prior
in the training d or by the predictions of the initial model on the testing t. These two
initializations are possible but at the end they are equivalent.

The only difference between g̃
(s)
ωk (equation (6.1)) and g̃ωk (equation (3.15) at page 28)

is that in g̃
(s)
ωk the a priori P (Ỹ = ωk) is replaced by the estimation P̂s(Ỹ = ωk). At each

iteration step s, both g̃
(s)
· (·) and P̂s(Ỹ = ·) are re-estimated for each testing example and

for each class ω until convergence of the a priori probabilities to a (local) maximum. Note
that, in order to obtain a good a priori probability estimation P̂ (Ỹ = y), it is necessary that
the gy(x

t
j) is reasonably well approximated by the model. A study of the robustness of the

proposed EM procedure, with respect to an imperfect a posteriori probability estimation, is
provided in [38].

We will now explain the rationale of this iterative EM method [38]. In order to pose
the problem as a maximum likelihood problem with incomplete information, let us intro-
duce an unobserved latent random variable L in such a way that we can assume (X̃,L) ∼
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F
X̃L(x, l) and we associate with the new testing input observations t = {xt1, . . . , xtNt

} a
vector {L1, . . . ,LNt} of random variables. The support of the latent variable is a binary
indicator vector of length |Y|. Let l be a realization of L. If ljk is the component k of vector
lj , then ljk = 1 and lji = 0 for each k 6= i, if and only if the output class label associated
with observation xtj is ωk. For instance, if xtj is assigned to ωk then

lj = [0, . . . , 0, 1, 0, . . . , 0 ]T
1 k |Y|

.

Let θ = [p(ω1), p(ω2), . . . , p(ω|Y|)]
T be the parameters that must be optimized by EM

where p(ωk) = P (Ỹ = ωk) is the a priori to observe ωk in the testing environment. The
likelihood to observe the input observations of the testing set is

L (θ, (t,L)) =

Nt∏

j=1

|Y|∏

k=1

[
f
X̃|Ỹ (xtj |ωk) p(ωk)

]Ljk

and the log likelihood is

`(θ, (t,L)) =

Nt∑

j=1

|Y|∑

k=1

Ljk log [p(ωk)] +

Nt∑

j=1

|Y|∑

k=1

Ljk log
[
f
X̃|Ỹ (xtj |ωk)

]
.

Note that the log likelihood in the previous equation depends on a random variable L. This is
due to the fact that no observations are directly available from this latent variable. The EM
iterative algorithm can be used in such situations where, during the E-step, the previous log
likelihood is replaced by the conditional expectation of `(θ, (t,L)) over P ({L1, . . . ,LNt} =
{l1, . . . , lNt}|t, θ).

Let θ̂1 be initialized by the a priori computed on the training set and let θ̂s = [p̂s(ω1), . . . ,
p̂s(ω|Y|)]

T be the current estimation values of the parameters at step s. The E-step is

Q(θ|θ̂s) = EL|t,θ̂s [`(θ, (t,L))]

=

Nt∑

j=1

|Y|∑

k=1

EL|xtj ,θ̂s
[Ljk] log [p(ωk)]

+

Nt∑

j=1

|Y|∑

k=1

EL|xtj ,θ̂s
[Ljk] log

[
f
X̃|Ỹ (xtj |ωk)

]

where we assume that the data {(xtj , lj)}Nt
j=1 are independent and where

EL|xtj ,θ̂s
[Ljk] = 0 · P (Ljk = 0|xtj , θ̂s) + 1 · P (Ljk = 1|xtj , θ̂s)

= P (Ljk = 1|X̃ = xtj , θ̂s)

= P (Ỹ = ωk|X̃ = xtj , θ̂s)

= g̃(s)
ωk

(xtj).
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The expected likelihood is therefore

Q(θ|θ̂s) =

Nt∑

j=1

|Y|∑

k=1

g̃(s)
ωk

(xtj) log [p(ωk)]

+

Nt∑

j=1

|Y|∑

k=1

g̃(s)
ωk

(xtj) log
[
f
X̃|Ỹ (xtj |ωk)

]
.

At the M-step of the EM algorithm, the new estimate at next iteration s + 1 will be
the value of the parameters θ maximizing Q(θ|θ̂s) (equation (3.8)). Given the constraint∑

k p(ωk) = 1, we define the Lagrange function as follows:

L(θ) = Q(θ|θ̂s) + λ


1−

|Y|∑

k=1

p(ωk)




=

Nt∑

j=1

|Y|∑

k=1

g̃(s)
ωk

(xtj) log [p(ωk)] +

Nt∑

j=1

|Y|∑

k=1

g̃(s)
ωk

(xtj) log
[
f
X̃|Ỹ (xtj |ωk)

]

+ λ


1−

|Y|∑

k=1

p(ωk)


 .

The first and second derivatives of the Lagrange according to p(ωk) are computed

∂L(θ)

∂p(ωk)
= [p(ωk)]

−1
Nt∑

j=1

g̃(s)
ωk

(xtj)− λ

∂2L(θ)

∂p(ωk)2
= − [p(ωk)]

−2

︸ ︷︷ ︸
>0

Nt∑

j=1

g̃(s)
ωk

(xtj)

︸ ︷︷ ︸
>0

< 0

As the second derivative is always negative, the value of the parameter p(ωk) at next iteration
canceling the first derivative is the one maximizing the Lagrange function:

∂L(θ)

∂p(ωk)
= 0 =⇒ p̂s+1(ωk) = λ−1

Nt∑

j=1

g̃(s)
ωk

(xtj)

If we sum the previous equation over the values in Y:

|Y|∑

k=1

p̂s+1(ωk) = λ−1
Nt∑

j=1

|Y|∑

k=1

g̃(s)
ωk

(xtj)

︸ ︷︷ ︸
=1

= λ−1 Nt = 1

⇔ λ = Nt

and therefore we retrieve the M-step of equation (6.1) where p̂s+1(ωk) = P̂s+1(Ỹ = ωk).
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Figure 6.1: Evolution of the prior probability during the iterations of the EM algorithm when
a logistic model is used to estimate gy(·) and where the problem is defined in equations (3.16)
and (3.17). Left: Prior probability shift is applied on the training data. Right: No prior
probability shift is applied.

6.1.2 Example with d = 1

This adjustment method will now be tested on the same synthetic example described in
equations (3.16) and (3.17) at page 30. The original training set contains Nd = 1000
observations with 252 observations from ω0, 248 observations from ω1, 253 observations
from ω2 and 247 observations from ω3. The conditional probability distribution that we
would like to have is shown in the top left of figure 3.3 at page 30. To simulate shift in the
data, the number of observations in ω1 is artificially reduced from 248 to 24 by selecting
independently at random 24 observations from the 248 observations in the original training
set. Reducing the number of examples in ω1 alters the prior probabilities of each class. In the
original training dataset, each class is represented by almost 1/4 of the observations. After
reducing the number of examples in ω1, classes ω0, ω2 and ω3 each represents almost 32% of
the observations in the new training set and ω1 represents only almost 3% of the observations.
The top right of figure 3.3 at page 30 shows the four new conditional distributions computed
on the reduced training dataset.

Unlike the experience made on page 30, here we assume that the original proportions
(i.e. 1/4 for each class) are unknown. The iterative method described in equation (6.1) is
used to simultaneously estimate the four original proportions (i.e. quantification) and to
adjust the a posteriori distributions.

The results of the evolution of the a priori estimations are given in the left part of
figure 6.1. As we can see, the adjustment of the a priori does not converge to the expected
value 0.25, annotated in the figure with a black dotted line. The two a priori distributions
P̂s(Ỹ = ω0) and P̂s(Ỹ = ω2) are pushed to a too small value when s increases. It is interesting
to see that both distributions ω0 and ω2 are on the edges (see top left of figure 3.3). It is as
if, during the EM iterations, the distributions ω0 and ω2 were crushed by the distribution
ω1 in the middle.

Figure 6.2 shows the conditional distributions at six steps of the EM iterative algorithm
(s = 1, s = 2, s = 3, s = 4, s = 10, s = 20). The initial step (s = 0) is at the top right of
figure 3.3 (page 30). As we can see, the evolution of the conditional distributions is complex.
Already at step s = 10, ω2 (red) is pushed down. Figure 6.3 shows the four conditional
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Figure 6.2: Six steps of the EM iterative algorithm where a logistic model is used to estimate
gy(·) and where the problem is defined in equations (3.16) and (3.17).

distributions after the convergence of the EM algorithm. As we can see g̃
(s=79)
ω1 (x) crushes

the distributions ω2.

Logistic models were used to do the previous experiences. In order to evaluate the impact
of the family of models on the quantification task, we did the same experience with random
forest classifiers. The evolution of the prior probability during the EM iterations is given at
the left part of figure 6.4. If we compare this result with the evolution given at the left part
of figure 6.1, we can see that the distribution of ω2 does not seem to be overestimated as it
was previously when logistic classifiers were used. As expected, the family of model has an
impact on the quantification learning process.

In order to understand what is going on, we also applied the EM algorithm on the same
problem but without undersampling class ω1, i.e. the training set is not modified. This
means that, before starting the adjustment EM algorithm, the four probabilities are already
at the beginning very close to their objectives (i.e. P̂s=1(Ỹ = y) = Ny

d /Nd ≈ 1/4 ). As the
algorithm starts with values very close to the objective, we can expect it to converge very
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Figure 6.3: The estimation of the conditional probabilities f
x̃|Ỹ (x|y) after the convergence

of the EM algorithm.
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Figure 6.4: Evolution of the prior probability during the iterations of the EM algorithm
when a random forest model is used. Left: Prior probability shift is applied on the training
data. Right: No prior probability shift is applied.

quickly to the right values. As we can see on the right part of figures 6.1 and 6.4 , after
starting with four prior probabilities close to 1/4, the probabilities stabilize very quickly and
do not diverge too much (the variation in the y-axis is relatively small (i.e. [0.2425, 0.2600]
in figure 6.1 and [0.247, 0.255] in figure 6.4 )). This corresponds to what was expected.

6.1.3 Example with d = 2

Let us now consider another multiclass classification problem where Y = {ω0, ω1, ω2, ω3}
and where the input dimension d equals 2:

X1 ∼ Unif(−2, 2)

X2 ∼ Unif(−2, 2)
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Figure 6.5: Upper left: Training data obtained from equation (6.2). Upper right: Training
data after prior probability shift. Bottom: The evolution of the prior probability estimation
during the EM iterations on the problem defined in equation (6.2) and when a logistic model
is used.

with

(Y |X = x) =





ω0, if x1 + ε1 < 0 and x2 + ε1 < 0

ω1, if x1 + ε1 > 0 and x2 + ε1 < 0

ω2, if x1 + ε1 < 0 and x2 + ε1 > 0

ω3, if x1 + ε1 > 0 and x2 + ε1 > 0

, where

[
ε1
ε2

]
∼ N

([
0
0

]
,

[
0.01 0

0 0.01

])
.

(6.2)
In the top left part of figure 6.5, we find the observations generated from the previous

equation. The original training set contains Nd = 10000 observations with 2422 observa-
tions from ω0, 2497 observations from ω1, 2536 observations from ω2 and 2545 observations
from ω3. To simulate shift in the data, the number of observations in ω1 (green points) is
artificially reduced from 2497 to 62 observations. The new sub sampled set is in the top
right part of figure 6.5. On the bottom of the figure, we can see the evolution of the four
a priori probabilities when the EM algorithm at equation (6.1) is used to adjust the priors
and logistic models are used to estimate the conditional probability in the training environ-
ment. We can see that in this case, the four probabilities seem to converge towards the good
objective represented by the black dashed line in the figure.

Figure 6.6 shows the predictions done by the model at three steps of the EM algorithm.
The horizontal and vertical dotted lines indicate the true target function (equation (6.2)).
The upper left of figure 6.6 shows the predictions before adjustment. We can see that ω1
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Figure 6.6: The predictive models obtained at three steps of the EM algorithm. Upper left:
The predictive model learned on the training set without any recalibration. Upper right:
The predictive model after the first step of the EM algorithm. Bottom: The predictive
model after converge of the EM algorithm.

(green) is predicted only for few points in the lower right corner. Follows the confusion
matrix of this initial model where the rows represent the actual classes of the instances and
the columns their predicted classes:




2364 0 54 4
407 1755 3 332
53 0 2441 42
2 0 53 2490


 .

We see that, on a total of 2497 observations from ω1, only 1755 observations are well classified
(i.e. the recall on ω1 equals 1755/2497 ≈ 0.7) and it is also interesting to observe that, except
on the diagonal, the second column of the confusion matrix has only zeros; meaning that no
false predictions are done from the class ω1 (i.e. the precision on ω1 equals 1755/1755 = 1).
Without adjustment, the F1-score on ω1 equals 2× precision×recall

precision+recall ≈ 0.82.

The upper right of figure 6.6 shows the predictions after only one iteration step of the
EM algorithm. We see that after only one step (s = 1), the EM algorithm has already
increased significantly the area covered by the predictions on ω1. The new confusion matrix
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is 


2310 65 47 0
72 2382 0 43
60 4 2427 45
0 69 45 2431


 .

The performance looks much better. We retrieve now 2382 of the 2497 observations from ω1

(i.e. the recall on ω1 equals 2382/2497 ≈ 0.954) but we are now doing some false predictions
from the class ω1 (i.e. the precision on ω1 equals 2382/2520 ≈ 0.945). The F1-score on ω1

equals approximately 0.949.
The bottom of figure 6.6 shows the predictions after convergence of the EM algorithm

(step s = 14). The confusion matrix after convergence is




2270 98 54 0
46 2432 1 18
51 8 2438 39
0 109 55 2381


 .

The recall and the precision on ω1 are now respectively approximately equal to 0.974 and
0.919. As expected, we get a much better recall but it is at the cost of a degradation of the
precision. The F1-score on ω1 equals approximately 0.945.

6.2 A stopping criteria for the EM algorithm

We saw in the previous examples that, in some circumstances, it can happen that the
evolution of the prior probability diverges during the iterations of the EM algorithm. To
deal with this issue, it is common to decide in advance to do only a small number of
iterations [18].

In this section, we will propose a method that tries to identify this divergence. This
will help to identify when the algorithm starts to divergence in order to stop the iterations
of the EM method (i.e. before the end of the convergence). Our method is therefore an
adaptive method (i.e., it is not needed to decide in advance the number of iterations of the
EM algorithm).

The rationale of our proposed method is the following.

• If we look at the upper right of figure 3.3 at page 30 and at the upper left of figure 6.6,
we can see that without adjustment, the modalities overrepresented in the training
environment d compared to target environment t crush the other modalities.

For instance: in figure 3.3, without adjustment the distribution of ω1 is crushed by
ω0 and ω2, and in the upper left of figure 6.6, the distribution of ω1 is blocked in the
corner by ω0 and ω3.

• If we look at figure 6.3 at page 53 and at the bottom of figure 6.6, we can see that
after convergence, the modality underrepresented in d compared to t exceed its limits
after convergence. In figure 6.3, the two boundaries of the Bayes’ decision rule of
modality ω1 were expected to be −1 and 0 (see equation (3.17) at page 30) but we
see in the figure that the conditional distribution of ω1 has a too high variance and
the boundaries go well beyond their limits (i.e. approximately −1.5 and 0.5). The
same remark can be made when we look at figure 6.6 where we can see that, after
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Figure 6.7: Evolution of P sW during the iterations of the EM algorithm on the quantification
problem defined at page 51.

convergence, the conditional distribution on ω1 tends to exceed its limits (although it
is not as strong as in figure 6.3).

What we would like to avoid are situations where a previously minority distribution
becomes majority after convergence to the point of dominating all others because it is a
symptom that the EM algorithm has diverged. To detect these situations, we propose to
use the weighted precision PW score:

P sW =
∑

ω∈Y
P̂ (Y = ω)× precision(ω)

where1

P̂ (Y = ω) = Nω
d /Nd

and

precision(ω) =

∑Nd
i=1 I

[
hs(xdi ) = ω ∧ yi = ω

]
∑Nd

i=1 I [hs(xdi ) = ω]

with
hs(xdi ) = arg max

ω
g̃(s)
ω (xdi ).

The weighted precision score calculates precision metric for each label, and finds their aver-
age, weighted by the number of true instances for each label. It should be noticed that P sW
is computed on the training set because no supervised observations are available in t.

Figure 6.7 shows the evolution of the weighted precision score during the 30 first steps of
the EM algorithm applied on the example given at page 51 when d = 1 and when a logistic
function is used to estimate gy(·).
• At the two first steps, we observe an increase of PW . This is because at s = 0 (top right

of figure 3.3 at page 30) and s = 1 (top left of figure 6.2 at page 52), the precision on
ω1 is almost one (i.e. the maximum2) but the model does false predictions with ω0 and

1It should be noted that we tried to replace P̂ (Y = ω) by P̂s(Ỹ = ω) but the performances were very bad.
2It is because the model predicted almost never ω1 and the few of these predictions are true positives.
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ω2 and consequently it reduces the precision on these two modalities. At the two first
steps, by increasing the prior probability of ω1 and decreasing the prior probability on
ω0 and ω2, the EM algorithm increases the precision of ω0 and ω2 while maintaining
the precision of ω1 close to one.

• The value of PW starts to decrease after step 3 because it is from this step that the
precision on ω1 begins to reduce and, at the same time, the improvements on the
precisions of ω0 and ω2 are less high.

The maximum of PW is reached when s = 2. This corresponds to the solution obtained
at the top right of figure 6.2. Compared to the initial situation at s = 0 (figure 3.3) and
the final situation after convergence (figure 6.3 at page 53), the solution proposed by our
strategy (top right of figure 6.2) is much better.

Note that there can be two reasons why, during the EM iterations, a previously minority
modality becomes largely majority. The first one is that the EM algorithm diverges to a
wrong solution and the second reason could be that it is the good solution (i.e. the previously
minority modality in the training environment, after a strong prior probability shift, is really
dominating the other modalities in the new testing environment). In this section, we make
the assumption that the first reason is the right one. But it is an assumption and therefore,
if our assumption is wrong, our stopping strategy can wrongly stop the EM iterations. This
is what will happen in our experiments in table 7.3 at page 67 where, with a random forest,
the classical EM method overperforms the EM method with the stopping criteria when β is
small3.

6.3 Adjusting the bias term of a CPE classifier in presence
of Prior Probability Shift

This section investigates how it is possible to directly adjust the bias term of a classifier
when the data are suffering from prior probability shift. Rather than just changing the
output of the model, this new approach will have the advantage of being able to directly
redesign the predictive model to the new sampling condition.

Equation (3.20) at page 32 gave us a procedure to adjust the bias term of a CPE classifier
when the new a priori in the testing environment is known. But in many situations, this
P (Ỹ = y) is unknown and the procedure described in equation (3.20) can therefore not be
applied. In this section, we will reuse the EM method presented in section 6.1.1 but here
our goal will be to directly modify the bias term of the CPE model.

From equations (6.1), (3.19) and (3.20), if α̃y0(s) from s = 1 is initialized by α̂y0 computed
in the training environment then, for s = 1, 2, 3, . . . the EM method provides the following

3A small β stands from a high probability shift.
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Figure 6.8: Evolution of the EM algorithm when the bias term is directly adjusted. Left: The
quantification problem is defined in equations (3.16) and (3.17). Right: The quantification
problem is defined in equation (6.2). In both cases, a logistic model is used to estimate gy(·).

steps for each testing observation xtj and each class ω:

g̃(s)
y (xtj) =

gy(x
t
j)
P̂s(Ỹ=y)
Ny

d /Nd

∑
y∈Y gy(x

t
j)
P̂s(Ỹ=y)
Ny

d /Nd

; ∀xtj ∈ t and ∀y ∈ Y

=
exp

[
(α̂y)Tγ(xtj) + α̃y0(s))

]

∑
y∈Y exp

[
(α̂y)Tγ(xtj) + α̃y0(s)

] ; ∀xtj ∈ t and ∀y ∈ Y

P̂s+1(Ỹ = y) = (Nt)
−1

Nt∑

j=1

g̃(s)
y (xtj); ∀y ∈ Y

(6.3)

where α̃y0(s) = α̂y0 + ln
(
P̂s(Ỹ = y)

)
− ln (Ny

d /Nd). The justification of the rationale of this

method follows the same way as in section 6.1.1.

6.3.1 Example

In this example, we will reproduce the two experiments done in section 6.1.2 at page 51.

First, the same synthetic example described in equations (3.16) and (3.17) is used. Like
before, the training set contains Nd = 1000 observations with 252 observations from ω0, 248
observations from ω1, 253 observations from ω2 and 247 observations from ω3. To simulate a
shift in the data, 24 observations from 248 are selected independently at random. We assume
that the original proportions (i.e. 1/4 for each class) are unknown. The top right of figure 3.3
at page 30 shows the four conditional distributions computed on the new training dataset.
The objective will be to recalibrate this conditional distribution. The evolution of the new
prior probability estimation is given in the left part of the figure 6.8 when equation (6.3) is
used to update the intercepts of the logistic model. As we can see, this curve is exactly the
same as the one in the left of figure 6.1 at page 51.

We will now reuse the same 10000 observations generated from the equation (6.2) de-
scribed at page 54. If we apply equation (6.3), the evolution of the prior of the new prior

59



estimation is given in the right part of the figure 6.8. Note that, this curve is exactly the
same as the one in the bottom of figure 6.5.

This confirms that the equation (6.3) is equivalent to the equation (6.1) when the new
prior is unknown except that (6.3) allows to directly modify the bias term in a CPE predictive
model. As expected, it shows empirically that adjusting the probability P (Y = y|X = x) or
adjusting directly the bias term when a softmax classifier is used, leads exactly to the same
result.
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Chapter 7

Experiments

7.1 Experimental design

7.1.1 Datasets

In this section, we will use 25 well known real datasets (table 7.1) extracted from the UCI
Machine Learning Repository1 to assess the adaptive methods presented in the previous
chapters. Note that, to the best of our knowledge, this is the first study that makes such a
comprehensive empirically comparison of the 4 strategies for prior probability shift. For each
dataset, we indicate in table 7.1, the number of observations (nb obs.), the input dimension
(d) and the number of categories in the output variable (|Y|). Note that for simplicity, we
made the following modifications on the original datasets:

• To have datasets without missing values, rows with missing values are removed.

– Dermatology had 8 observations with at least one missing value.

– Mammographic Mass had 131 observations with at least one missing value.

– Mice Protein Expression had 528 observations with at least one missing value.

• To have only real input variables, all the input categorical variables are transformed
by one hot encoding2.

• All the numerical input variables are normalized (i.e. centered and divided by the
standard deviation).

• In Letter Recognition, we took only vowels (A, E, I, O, U, Y ).

In the experiment, the datasets in table 7.1 will be randomly divided into two: a training
set and testing set. The prior probability shift will be applied on the training set before the
parametric identification and the test set will not be modified. Different levels of intensities
of the prior probability shift will be studied.

1https://archive.ics.uci.edu/ml/
2It is a way to represent a categorical variable with, for instance, five levels as a binary vector of length

four.
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# Dataset name nb obs. d |Y|
1 Abalone 4177 8 3
2 Balance Scale 625 4 3
3 Banknote authentication 1372 4 2
4 Blood Transfusion Service Center 748 4 2
5 Breast Tissue 106 9 6
6 Default of credit card clients 30000 23 2
7 Dermatology 366 34 6
8 Ecoli 336 8 8
9 Glass Identification 214 9 6
10 Haberman’s Survival 306 3 2
11 HTRU2 17898 8 2
12 Image Segmentation 210 19 7
13 Iris 150 4 3
14 Letter Recognition 4664 16 6
15 Magic Gamma Telescope 19020 10 2
16 Mammographic Mass 830 5 2
17 Mice Protein Expression 552 80 8
18 Occupancy Detection 8143 5 2
19 Page Blocks Classification 5473 10 5
20 Pen-Based Recognition of Handwritten Digits 7494 16 10
21 Sonar - Connectionist Bench 208 60 2
22 Seismic-bumps 2584 18 2
23 Spambase 4601 57 2
24 Waveform Database Generator (Version 1) 5000 21 3
25 Wine 178 13 3

Table 7.1: List of the real datasets used during the experiments.

7.1.2 Algorithms

Two types of models were used during the experiments. We indicate, in the following
table, the type of model, the Python function from Scikit-Learn used for the parametric
identification and the hyper-parameters:

Type of model Python function Hyper-parameters

Logistic regression sklearn.linear model.LogisticRegression() Default sklean’s hyper-parameters
Random forest sklearn.ensemble.RandomForestClassifier() Number of trees set to 200

The following adaptive strategies for prior probability shift are compared:

• acc: The adjusted classify and count (ACC) adjustment strategy (also called the
confusion matrix strategy) described in chapter 4 at page 35. As we have seen, the
ACC adjustment method can issue problems when solving the system of equations
because the matrix that we have to inverse can be singular. It is also possible to get
probabilities that are not in [0, 1] or that do not sum to one.

• acc-qp: This is the version of the ACC adjustment method, described in section 4.3
at page 37, where a quadratic program with constraints is used to resolve the system
of linear equations.

• cde: The class distribution estimation (CDE-iterate) adjustment strategy described
in chapter 5 at page 43. Note that this method cannot be applied when |Y| > 2.

• em: The expectation-maximization adjustment strategy described in chapter 6 at
page 47.
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• em-stop: The expectation-maximization adjustment strategy with a stopping criterion
described in section 6.2 at page 56.

For benchmarking purpose, we added the following other strategies:

• oracle-bayes: This method will cheat because it will already know the true prevalence
of the output in the testing environment. Therefore, it is not going to do quantification.
The oracle-bayes strategy will use its knowledge about the true prior probability in the
target environment to apply the Bayes correction given in equation (3.15) at page 28.
This is a strategy that will make a perfect adaptation of the predictive model g(·). It
should be noted that in this case g(·) is still estimated with a biased training set d.

• oracle This method is also cheating because it uses for training the original training
data set when no prior probability shift is applied. This means that in this situation,
we will assume that all the samples in the training and testing sets are identically
distributed. As we will see and as expected, this method will have the best performance
during the experiments.

• base The two previous strategies are oracle based benchmarks meaning that they
have information that is not accessible in real conditions. These two strategies are
somehow superior strategies and the performance of conventional strategies should
not reach the performance of these two strategies. They represent an upper bound
of the best performance for the conventional strategies. We introduced a eighth and
last strategy called base. This is the method that learns the predictive model on the
training set on which priority probability shift was introduced and it does not make any
adjustment to correct the model. It is a strategy that estimates the new prevalence
by simply applying (without any adjustment) a classifier learned on data from the
source environment on the testing date from the target environment and then the
estimation of the new prevalence is obtained by counting the the prediction of each
class. Although very naive, this method is very often used in practice by machine
learners experts who are not always aware about the specificities of quantification
learning [18]. The performance of this base method represents a lower bound that
classical methods should beat. Note that, like in [20, 18], this method is often called
classify and count (CC).

7.1.3 Experimental method

During the experiments, we will estimate the ability of the strategies in two contexts: quan-
tification and classification. In quantification context, the strategies will have to calculate an
estimate of the prior in the testing environment P̂ (Ỹ = y) and, in the classification context,
the algorithm (3.15) is used to recalibrate the predictive model to the new estimated prior.
Note that, as the methods oracle-bayes and oracle are not performing quantification, the
quantification performances are compared between the other methods (acc, acc-qp, cde, em,
em-stop, base).

The experimental design is described in algorithm 3. This function receives four parame-
ters: (i) a generic type of model Λ which is logistic regression or random forest, (ii) a dataset
D from table 7.1, (iii) the rate of subsampling β that we will apply to simulate the prior
probability shift and (iv) the number of times that the experience is repeated. The main
loop (lines 2 to 17) repeats the whole experimental design “nb loops” times. At line 3, the
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Algorithm 3 Experimental design

1: function Exp-Design(Λ,D, β, nb loops = 100)
2: for l← 1 to nb loops do
3: d, t ← split train test(D) . Stratified random sampling
4: d

′ ← modify prior proba(d, β) . See algorithm 4
5: g ← IP (Λ, d

′
)

6: g̃acc ← Adjustment-acc(g, t)
7: g̃cde ← Adjustment-cde(g, t)
8: g̃em ← Adjustment-em(g, t)
9: g̃em-stop ← Adjustment-em-stop(g, t)

10: g̃oracle-bayes ← Adjustment-oracle-bayes(g, t)
11: g̃oracle ← IP (Λ, d)
12: for j ← 1 to Nt do
13: for g ∈ {g, g̃acc, g̃cde, g̃em, g̃em-stop, g̃oracle-bayes, g̃oracle} do
14: ŷgj ← arg maxω∈Y gω(xtj)
15: end for
16: end for
17: end for
18: return

(
{ŷjl}, {ỹg̃accjl }, {ỹ

g̃cde
jl }, {ỹ

g̃em
jl }, {ỹ

g̃em-stop

jl }{ỹg̃oracle-bayesjl }, {ỹg̃oraclejl }, {ytjl}
)

19: end function

dataset D is divided at random (stratified random sampling) into the training dataset d and
the testing dataset t. Stratification sampling is used to ensure that d and t have exactly the
same prior. But, as prior probability shift is assumed, it is needed to modify the training
dataset d and this is done at line 4 by the method ”modify prior proba” (algorithm 4). At
line 5, the parametric identification algorithm is applied on Λ with the new training dataset
d
′

and lines 6-10 adjust the predictive model3 g. At line 11, the oracle model is learned
with d (rather than d

′
). The Bayes’ decision rule is then applied on all testing observations

(lines 12 to 16) with the original model g, the oracle model g̃oracle and the adjusted models
g̃. The function returns eight matrices, each with dimensions “Nt × nb loops”:

• {ŷjl} contains all the predictions done by the model without adjustment (that corre-
sponds to base method),

• {ỹgjl} contains all the predictions done by the model with adjustment where g ∈
{g̃acc, g̃acc-qp, g̃cde, g̃em, g̃em-stop, g̃oracle-bayes, g̃oracle} and

• {ytjl} contains the real output values (it is used to compute the classification errors).

At line 4 of algorithm 3, a method “modify prior proba” is used to transform the orig-
inal dataset by introducing prior probability shift. The method “modify prior proba” is
described in algorithm 4. It has two parameters: (i) a training dataset d and (ii) the rate
of prior probability shift β that we will introduce in the data. The prior probability shift is
introduced by randomly removing observations from some modalities of the output variable.
As |Y| > 1, there are several modalities on which observations can be deleted. At line 3, a
random number n between 1 and |Y|−1 is selected. n is the number of modalities on which

3The methods return also estimations of P (Ỹ = ·) for quantification.
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Algorithm 4 modification of the prior probability in d

1: function modify prior proba(d, β)
2: d

′ ← {}
3: n ← Random selection of an element from {1, 2, 3, . . . , |Y| − 1}
4: Ω ← Random selection of n elements from {ω0, ω1, ω2, . . . , ω|Y|−1}
5: for ω ∈ {ω0, ω1, ω2, . . . , ω|Y|−1} do
6: v ← {(xd, yd) | (xd, yd) ∈ d ∧ yd = ω}
7: if ω ∈ Ω then
8: v

′ ← Select randomly d|v| × βe elements from v.
9: d

′ ← d
′ ∪ v′

10: else
11: d

′ ← d
′ ∪ v

12: end if
13: end for
14: return d

′

15: end function

the shift will be done. Line 4 selects randomly the n modalities Ω on which the algorithm
will introduce prior probability shift. The loop from line 5 to line 13 iterates on the |Y|
modalities of the output variable. v is a set containing all the observations from the original
training set d where the output equals ω. If ω is in Ω, a new set v

′
is created at line 8 where

d|v| × βe elements from v are randomly selected without replacement. The parameter β is
a real number in [0, 1] and defines the intensity of the prior probability shift. A small value
of β means a high intensity of prior probability shift and, on the other hand, if β = 1 then
there is no transformation in the training dataset. The new set v

′
is added to d

′
. In the

second case, if ω is not in Ω, the original set v is added to d
′

at line 11. Finally, the function
returns the new dataset at line 14.

7.1.4 Accuracy measures

The strategies are compared in two different contexts: classification and quantification. And
different criteria for the accuracy evaluation are used according to the context.

1. In classification, the F1 is used as accuracy criterion.

2. In quantification, the mean square error (mse) is used. For instance if

P (Ỹ = ·) = (0.1, 0.3, 0.6) and P̂ (Ỹ = ·) = (0.4, 0.2, 0.4)

then

mse = (0.1− 0.4)2 + (0.3− 0.2)2 + (0.6− 0.4)2 = 0.14.

As an indication, table 7.2 gives the mse quantification error that we obtain if we take

P̂ (Y = ω) = Nω
d /Nd

as estimation of P (Ỹ = ω). This represents a naive lower bound because we actually do
nothing. We just take the empirical proportions Nω

d /Nd in the training population and use
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β mse of Nω
d /Nd

0.1 0.22732
0.2 0.13337
0.3 0.07989
0.4 0.04752
0.5 0.02811
0.6 0.01561
0.7 0.00805
0.8 0.00311
0.9 0.00081

Table 7.2: Quantification context with mean square error (the lower the better) on 25
datasets. Mistake made when Nω

d /Nd is used to estimate P (Ŷ = ω).

these proportions in the testing environment as estimation of the prevalence of the output
variable P (Ỹ = ω).

When β reduces, the intensity of the prior probability shift increases. As expected, when
β is close to one, the error is very low. At the limit and by definition, when β = 1 then we
know the the mean square error is null. The values in this table will be used as indication
measures for the experimental results in the following section.

7.2 Results

This section discuss the results of the experiment described in the previous section. The
appendix A contains all the figures with the detailed results of the different methods applied
on the 25 datasets and this for quantification and classification problems.

In the previous section, we have seen that both acc and cde can not be applied in any
cases. In certain circumstances, acc cannot compute a solution because it has to invert a
singular matrix or, even when a solution is computed, we are not sure that the solution is
a probability (e.g. values can be out of [0, 1]). For cde, solutions can be calculated only for
binary classification problems |Y| = 2.

As only em methods can be used in any cases, we will start by comparing the em and the
em-stop algorithms with the 3 benchmark methods on the 25 datasets. Afterwards, the acc
method will be consider and we will finish this section by assessing cde strategy on binary
classification problems.

In the next subsections, tables will allows us to evaluate the relative performance of the
adaptive strategies. For each value of β, for each adaptive strategy and for each learning
algorithm (logistic or random forest), the value in a cell gives the average computed on 25
accuracy measures (mse from quantification or F1-score for classification). For each value
of β and for each learning algorithm, the best adaptive strategy is underlined. A paired
t-test, on 25 measures, is used to compare the performance of the best strategy against the
performances of the other strategies. A cell is in bold if the p-value is bigger than .05.

7.2.1 The EM methods versus the benchmark methods

The methods em and em-stop are evaluated on the 25 datasets (table 7.1) with oracle-bayes,
oracle and base as benchmark methods. The methods are evaluated in two contexts.

• First we evaluate the capacity of the methods to do quantification. As oracle-bayes and
oracle know the prior probability in the testing set, these two methods are excluded

66



from these evaluation. The results are in table 7.3. Mean square error (lower better)
is used in this context as accuracy measure. The values in the cells of the table are
averages computed on 25 values.

• Once the quantification is done, the model trained on d
′

is recalibrated4 for the testing
environment. The results are in table 7.4. The five methods are evaluated and the F1
score is used as accuracy measure (higher better). The values in the cells are averages
computed on 25 values.

Logistic Random forest
β em em-stop base em em-stop base

0.1 0.07731 0.02451 0.08904 0.01344 0.02376 0.08969
0.2 0.05242 0.01553 0.05177 0.00866 0.01072 0.05158
0.3 0.04309 0.01225 0.03146 0.00588 0.00587 0.03168
0.4 0.03720 0.01136 0.01895 0.00441 0.00385 0.01903
0.5 0.03056 0.00904 0.01122 0.00351 0.00264 0.01121
0.6 0.02747 0.00704 0.00616 0.00317 0.00210 0.00617
0.7 0.02639 0.00684 0.00312 0.00275 0.00179 0.00312
0.8 0.02334 0.00571 0.00123 0.00235 0.00164 0.00122
0.9 0.02299 0.00563 0.00030 0.00215 0.00156 0.00030

Table 7.3: Quantification context with mean square error (lower better) on 25 datasets. The
best method is underlined and methods that are not significantly worse than the best (p-val
> 0.05 with paired t-test) are in bold.

Logistic Random forest
β em em-stop oracle-bayes oracle base em em-stop oracle-bayes oracle base

0.1 0.5484 0.7302 0.7899 0.8442 0.7056 0.7656 0.7629 0.8219 0.8680 0.7076
0.2 0.6346 0.7748 0.8215 0.8452 0.7722 0.8006 0.8125 0.8432 0.8676 0.7877
0.3 0.6710 0.7897 0.8311 0.8451 0.8027 0.8201 0.8309 0.8515 0.8672 0.8200
0.4 0.6931 0.7945 0.8356 0.8448 0.8184 0.8308 0.8397 0.8564 0.8682 0.8381
0.5 0.7118 0.8028 0.8391 0.8458 0.8268 0.8392 0.8472 0.8609 0.8678 0.8496
0.6 0.7248 0.8147 0.8409 0.8456 0.8327 0.8445 0.8515 0.8626 0.8676 0.8564
0.7 0.7324 0.8153 0.8421 0.8455 0.8371 0.8474 0.8533 0.8646 0.8679 0.8615
0.8 0.7389 0.8210 0.8431 0.8450 0.8405 0.8500 0.8548 0.8653 0.8669 0.8633
0.9 0.7428 0.8234 0.8452 0.8457 0.8436 0.8526 0.8572 0.8668 0.8673 0.8657

Table 7.4: Classification context with F1-score (higher better) on 25 datasets. The best
method among em, em-stop, and base is underlined and methods that are not significantly
different than the best (p-val > 0.05 with paired t-test) are in bold.

Concerning the quantification problem, in both cases logistic and random forest, when
β is close to 1, the base method outperform the two other methods (table 7.3). This can
be explained by the fact that when β is close to 1 then the a priori of the base method
(i.e. P (Y = ·)) is close to the true value (i.e. P (Ỹ = ·)). The two other methods (em and
em-stop) try to adjust the prior probability of the output from the training environment to
the testing one. By doing this adjust, it can happen that the algorithms em and em-stop
are moving away a bit from the true prior distribution P (Ỹ = ·). We have already observed
this issue in the right of the figure 6.1 at page 51 where the evolution of the prior probability
during the iterations of the EM algorithm is showed when a logistic model is used. In the
right of the figure 6.1, the EM algorithm is initialized with the true prior values computed on
the testing and, instead of staying stable, the values of the four priors have a little diverged.

4Except base which is, by definition, not recalibrated.
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This can probably be explained by the fact that the EM algorithm assume that the CPE
model gy(x) estimates perfectly the unknown conditional probability P (Y = y|X = x). As
there is always an error in the estimate of P (Y = y|X = x), this can explain why em and
em-stop are less accurate than the base method when β is close to 1. We can even see that
when logistic models are used, the base method outperform (not significantly) the two other
methods already from β = 0.6. When random forest models are used, the base method
outperform (not significantly) the two other methods at β = 0.8. It can be explained by the
fact that random forest models tend to outperform in accuracy the logistic models on real
dataset with lot of no linearity.

As we can see, if we compare the results in table 7.3 with the table 7.2 at page 66, except
when β equals 0.9, all the methods are better than Nω

d /Nd. It was expected that when β
equals 0.9, the mse of the estimation Nω

d /Nd is very good because we know that at the limit
when β = 1, the mse error is zero.

Still in the table 7.3, the em-stop adjustment method outperform the two other methods
when logistic models are used and when β is small. The em-stop method has a mechanism
that prevents the EM algorithm from diverging to inaccurate values. The EM algorithm
assume that gy(x) is a good estimator for P (Y = y|X = x) but as logistic models are
intrinsically linear models followed by a logistic transformation and they separate the classes
by hyperplanes (see the softmax equation (3.18) at page 32 where γ(x) = x), they are not
able to capture the non-linear relationships between the input/output variables that we can
have in real data sets like the ones in table 7.1. The logistic models tend to underfit (page
22) the training data set and therefore a predictive model generated from this family of
models can be a bad predictor. The EM algorithm can then easily diverge with logistic
models and that could be an explanation why em-stop has better quantification accuracy
scores because it can stop this divergence.

On real data sets containing non-linear input/output relationships, a predictive model
computed from the family of the random forest models is usually a better estimator than
a predictive model extracted from the family of logistic models. We can see that the em
method with random forest gives better results. When β equals 0.1 or 0.2, em with random
forest is even better then em-stop (but not significantly). That can be explained by the fact
that, by preventing the EM algorithm to diverge to an accurate prior value, the em-stop
avoids the estimation P̂ (Ỹ = ·) to be far from P (Y = ·). As the distance between the prior
probabilities of the output variable in the training and the testing is maximal when β is
small, it explains why em outperform em-stop when β equals 0.1 or 0.2.

We have also evaluated the three methods (em, em-stop and base) in the quantification
context with non-parametric statistical tests. We studied the three methods in the cases
when logistic models are used, when random forest models are used and when both types
of models are used. The evaluations were done for all β values at once. This means that in
the two first cases, the evaluations are done with 225 values (i.e., 25 datasets × 9 values for
β). In the last case, when both types of models are used, the evaluations are done with 450
values (i.e., 2 types of models × 225). The results are given in table 7.5. As we can see, if
we do an overall analysis over the β values, the Friedman test detects significant differences
in the accuracies in the three contexts (Logistic, Random forest and Both). If we look at the
averages and median, we can see that em-stop overperforms the other methods in all the
cases except for the random forest scores aggregated by the mean where em overperforms.
If we consider the p-values of the Nemenyi and the Wilcoxon tests, we can see that (i) in
all the cases, the em-stop method significantly overperforms the base, (ii) the em method
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Logistic Random forest Both
em em-stop base em em-stop base em em-stop base

Mean 0.0379 0.0109 0.0237 0.0051 0.0060 0.0238 0.0215 0.0084 0.0237
Median 0.0036 0.0025 0.0066 0.0016 0.0014 0.0065 0.0019 0.0018 0.0065

Friedman test (p-val) = 2.031e-09 < 2.2e-16 < 2.2e-16

Logistic
em - base em-stop - base em-stop - em

Nemenyi test (p-val) 0.0412 0.0002 0.2877
Wilcoxon test (p-val) 0.0369 2.1e-05 0.2401

Random forest
em - base em-stop - base em-stop - em

Nemenyi test (p-val) 1.2e-13 7.6e-12 0.8344
Wilcoxon test (p-val) 5.2e-14 1.8e-12 0.5358

Both
em - base em-stop - base em-stop - em

Nemenyi test (p-val) 2.2e-12 8.1e-14 0.8851
Wilcoxon test (p-val) 9.6e-12 1.2e-15 0.9124

Table 7.5: Comparisons of the 3 methods (em, em-stop and base) in the quantification
context (mse) with non-parametric statistical tests.

significantly overperforms the base in all the cases except for Logistic where the two p-
values stay close to 0.05, (iii) we never get significantly different performances between em
and em-stop.

In the classification context (table 7.4), as expected the benchmark oracle method out-
performs all the other methods. Rather than using d

′
(line 4 of algorithm 3 at page 64)

for the parametric identification, this method uses, the original training data set d without
prior probability shift (line 11 of algorithm 3). It means that for oracle, the observations in
the training and in the testing sets are drawn from the same distribution. It is not the case
for all the other methods where the parametric identification is done with d

′
.

If we compare em and em-stop, we see in table 7.4 that em-stop outperforms all the times
em except from random forest with β = 0.1. We can do the same remark as for quantification
learning: the em-stop method outperforms more significantly the em adjustment method
when an inaccurate predictive model is used like logistic models. But the advantage of
em-stop is reduced when an accurate predictive model is used with a small β.

The figure 7.1 shows the evolution of the number of loops done by the em-stop method.
As we can see the em-stop method authorize more loops when random forest are used. It can
be explained by the fact that, on real non-linear data sets, the predictive models generated
from the family of random forest are often more accurate than the ones generated from the
family of logistic models. When a predictive model is a bad estimator of the unknown target
function, the EM method tends to diverge to a bad estimation of the probability P (Ỹ = ·)
and em-stop tries to detected this divergence and stops the iterations. That explain why
em-stop authorize less loops when logistic models are used.

From figure 7.1, we can see that when β increases, the average of the number of loops in
em-stop increase also. When β is close to one, the shift introduced in the prior probability
is low. That mean that the distance between the source and target environment is relatively
small and therefore em-stop authorize more iterations.
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Figure 7.1: The evolution of average (with 0.95 confidence interval) of the number of loops
done by the em-stop adjustment method in function of the intensity of the prior probability
shift β and the type of model Λ. The average is computed across all the loops done on all
the 25 data sets presented in table 7.1.

7.2.2 The ACC method and singular matrices

As we know that the ACC method may have trouble to estimate the new prior in the testing
environment, we start by counting the number of times the the ACC method was not able
to estimate P (Ỹ = ·) The results are given in the table 7.6. This table gives the details for
each dataset D, for each learning algorithm and for each value of β. ACC method can have
two type of problems. Either the method can not invert the matrix or the method returns a
probability vector with values smaller than zero or greater than one. For each combination
for D, model and β , the first value in the table gives the number of times that the matrix
was singular and the second value gives the number of times that the probability vector was
not compliant.

As we can see, the method produces a very large number of errors. There was no mistake
only with the dataset 3 (Banknote authentication). On this dataset, the ACC method was
able to do the quantification in all situations (for any β and for any type of model (logistic
or random forest)).

The ACC method and random forest model did no mistakes with three additional
datasets: 14 (Letter Recognition), 18 (Occupancy Detection) and 20 (Pen-Based Recog-
nition of Handwritten Digits). There are no additional case where the ACC method with
the logistic model do no errors.

Concerning the value of β, we observe that there is more singular matrix issue when β is
small. This can be explained as follows. When β is small, the method modify prior proba
will remove a lot of observations from some modalities. When the model learned on d

′
is

tested on t, some of the modalities will never be predicted. Consequently, some column
in the confusion matrix contain only zeros (e.g. equation (4.6) at page 40). This problem
occurs more frequently when the training set is unbalanced and it is the case with small
values of β.

The table 7.6 has shown that the classical version of the ACC has often problem on real
data sets. We will now use the modified version of ACC that we proposed in the section 4.3.
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D Model β = 0.1 β = 0.2 β = 0.3 β = 0.4 β = 0.5 β = 0.6 β = 0.7 β = 0.8 β = 0.9

1
L 76 24 58 42 38 62 23 77 9 91 1 98 0 99 0 97 0 98
RF 18 82 0 100 0 99 0 99 0 98 0 100 0 100 0 99 0 83

2
L 44 41 72 28 87 13 87 13 97 3 98 2 100 0 100 0 100 0
RF 27 71 18 72 3 97 3 97 0 100 0 100 0 100 0 100 0 100

3
L 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RF 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4
L 30 70 14 58 6 47 4 58 0 90 0 100 0 100 0 100 0 100
RF 8 89 0 59 0 55 0 88 0 99 0 100 0 100 0 100 0 100

5
L 80 20 82 18 87 12 88 12 74 26 59 39 42 56 25 73 8 83
RF 71 25 77 20 61 37 44 49 21 69 4 81 3 82 0 88 1 71

6
L 0 100 0 89 0 68 0 100 0 100 0 100 0 100 0 100 0 100
RF 4 96 0 58 0 89 0 100 0 100 0 100 0 100 0 100 0 100

7
L 71 7 10 30 4 10 0 0 0 1 0 0 0 0 0 0 0 0
RF 84 4 48 31 16 32 3 27 0 24 0 15 0 7 0 2 0 0

8
L 95 5 94 6 86 14 81 19 80 20 75 25 80 20 76 24 78 22
RF 100 0 97 3 95 5 95 5 97 3 94 6 98 2 96 4 97 3

9
L 93 7 87 13 84 15 79 21 86 14 85 15 91 9 85 15 83 17
RF 85 15 71 26 68 32 72 28 54 46 57 43 53 47 41 59 29 71

10
L 46 54 22 74 6 69 2 92 2 98 1 99 6 94 0 100 0 100
RF 32 68 8 78 0 55 2 65 0 90 0 97 5 95 3 97 0 100

11
L 0 44 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100
RF 0 44 0 56 0 94 0 100 0 100 0 100 0 100 0 100 0 100

12
L 83 16 69 20 43 44 14 52 6 68 0 54 1 40 0 34 0 16
RF 81 18 59 28 26 46 3 44 1 28 0 7 0 10 0 0 0 2

13
L 70 12 27 46 13 67 5 62 0 44 0 28 0 24 0 2 0 1
RF 43 22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

14
L 0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RF 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15
L 0 100 0 43 0 47 0 52 0 47 0 52 0 43 0 43 0 100
RF 0 100 0 50 0 54 0 51 0 40 0 0 0 0 0 0 0 0

16
L 0 100 0 74 0 6 0 0 0 0 0 0 0 0 0 0 0 0
RF 0 100 0 71 0 19 0 1 0 0 0 0 0 0 0 0 0 0

17
L 69 23 8 30 0 8 0 0 0 1 0 0 0 0 0 0 0 0
RF 94 5 25 47 6 38 0 32 0 2 0 1 0 0 0 0 0 0

18
L 0 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RF 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

19
L 67 33 47 53 29 71 23 77 14 86 12 88 9 91 6 94 3 97
RF 49 51 27 73 9 91 11 89 1 99 0 100 0 100 0 100 0 100

20
L 0 56 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RF 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

21
L 0 68 0 49 0 38 0 17 0 9 0 4 0 1 0 0 0 0
RF 90 10 37 63 6 94 0 92 0 62 0 38 0 35 0 23 0 5

22
L 28 72 21 79 9 91 3 97 0 100 0 100 0 100 0 100 0 100
RF 50 46 53 47 39 61 33 67 27 73 10 90 6 94 6 94 0 100

23
L 0 53 0 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RF 0 49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

24
L 0 62 0 48 0 9 0 0 0 0 0 0 0 0 0 0 0 0
RF 0 99 0 48 0 21 0 0 0 0 0 0 0 0 0 0 0 0

25
L 12 16 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RF 75 18 6 17 0 1 0 0 0 0 0 0 0 0 0 0 0 0

Table 7.6: Count the number of times that ACC was not able to produce a prediction.
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The results are in tables 7.7 and 7.8. For these experiments, we tested only three methods
(em-stop, base and acc-qp), the following three data sets where removed 5: Default of credit
card clients, HTRU2 and Magic Gamma Telescope and nb loops is set to 50 (rather than
100, like before). Compared to the two other methods, acc-qp is never the best and it is

Logistic Random forest
β em-stop base acc-qp em-stop base acc-qp

0.1 0.02308 0.09042 0.08148 0.02341 0.08835 0.05566
0.2 0.01574 0.05137 0.03848 0.01046 0.05165 0.06136
0.3 0.01277 0.03169 0.04630 0.00570 0.03162 0.03639
0.4 0.01185 0.01907 0.04979 0.00365 0.01915 0.02310
0.5 0.00917 0.01128 0.04751 0.00267 0.01125 0.01428
0.6 0.00782 0.00618 0.04917 0.00210 0.00614 0.04607
0.7 0.00605 0.00314 0.02037 0.00184 0.00316 0.01650
0.8 0.00674 0.00122 0.04805 0.00153 0.00122 0.01631
0.9 0.00622 0.00030 0.01960 0.00145 0.00030 0.01532

Table 7.7: Quantification context with mean square error (lower better) on 22 datasets.
acc-qp stand for the adjusted classify and count method based on a quadratic program with
constraints (section 4.3 at page 37). The best method is underlined and methods that are
not significantly worse than the best (p-val > 0.05 with paired t-test) are in bold.

Logistic Random forest
β em-stop base acc-qp em-stop base acc-qp

0.1 0.7293 0.6956 0.6775 0.7591 0.7019 0.7437
0.2 0.7715 0.7694 0.7252 0.8100 0.7826 0.7877
0.3 0.7881 0.8019 0.7647 0.8277 0.8170 0.8130
0.4 0.7910 0.8169 0.7858 0.8386 0.8366 0.8257
0.5 0.8042 0.8282 0.7948 0.8455 0.8479 0.8328
0.6 0.8092 0.8324 0.8002 0.8489 0.8531 0.8397
0.7 0.8165 0.8358 0.8089 0.8511 0.8586 0.8452
0.8 0.8178 0.8400 0.8137 0.8539 0.8614 0.8490
0.9 0.8219 0.8429 0.8178 0.8557 0.8635 0.8506

Table 7.8: Classification context with F1-score (higher better) on 22 datasets. acc-qp stand
for the adjusted classify and count method based on a quadratic program with constraints
(section 4.3 at page 37). The best method is underlined and methods that are not signifi-
cantly worse than the best (p-val > 0.05 with paired t-test) are in bold.

also often significantly worst. The gap between acc-qp and the two other methods is bigger
when β is close to one.

If we compare these results with the table 7.2 at page 66. We can see that although the
results in table 7.7 are not very good, they are still better than Nω

d /Nd when β is small.
When logistic models are used, the mse of acc-qp is better than table 7.7 when β ≤ 0.3 and
when random forest models are used, the mse is better when β ≤ 0.5.

7.2.3 The CDE method when |Y| = 2

In this section, we compare the CDE method, the EM methods and the benchmark methods
on the 11 binary classification problems. As before, we consider two learning problems. First
we consider the quantification learning problem where P (Ỹ = ·) in the testing environment
must be estimated. The results of the quantification learning problem are in table 7.9. In a
second time, we consider the binary classification learning problem where the estimation of

5Because they are too big and require a lot of computing power to be evaluated
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P (Ỹ = ·) computed at the previous step is used with equation (3.15) at page 28 to recalibrate
the predictive model. We recall that for the binary classification learning problem, the
oracle-bayes method do not use an estimation P̂ (Ỹ = ·) but it uses directly the true value of
P (Ỹ = ·) and the oracle method do not need to do recalibration because it uses for IP the
original training set before prior probability shift is introduced. The results of the binary
classification learning problem are in table 7.10.

Logistic Random forest
β cde em em-stop base cde em em-stop base

0.1 0.09565 0.06808 0.03461 0.14764 0.08924 0.01899 0.04335 0.15027
0.2 0.07492 0.03246 0.01929 0.08572 0.04361 0.01272 0.01881 0.08533
0.3 0.02956 0.02031 0.01220 0.05176 0.02509 0.00876 0.01025 0.05209
0.4 0.02387 0.01155 0.00798 0.03136 0.01547 0.00626 0.00647 0.03122
0.5 0.02272 0.00806 0.00605 0.01840 0.00993 0.00465 0.00412 0.01847
0.6 0.02224 0.00815 0.00515 0.01014 0.00659 0.00444 0.00317 0.01016
0.7 0.02202 0.00623 0.00389 0.00506 0.00507 0.00352 0.00255 0.00504
0.8 0.02207 0.00619 0.00280 0.00199 0.00405 0.00296 0.00227 0.00200
0.9 0.02194 0.00465 0.00239 0.00046 0.00332 0.00278 0.00220 0.00046

Table 7.9: Quantification context with mean square error (lower better) on 11 datasets. cde
stand for the class distribution estimation method (chapter 5 at page 43). The best method
among em, em-stop, and base is underlined and methods that are not significantly worse
than the best (p-val > 0.05 with paired t-test) are in bold.

Logistic
β cde em em-stop oracle-bayes oracle base

0.1 0.68472 0.74949 0.77119 0.83591 0.84518 0.70858
0.2 0.73665 0.79947 0.80815 0.84121 0.84537 0.77829
0.3 0.79353 0.81792 0.82367 0.84306 0.84557 0.81599
0.4 0.80415 0.82937 0.83473 0.84380 0.84565 0.83296
0.5 0.80770 0.83513 0.83865 0.84560 0.84630 0.83952
0.6 0.80832 0.83232 0.83823 0.84458 0.84538 0.84156
0.7 0.80921 0.83935 0.84374 0.84571 0.84624 0.84537
0.8 0.80916 0.83759 0.84533 0.84578 0.84612 0.84540
0.9 0.81020 0.84251 0.84531 0.84627 0.84590 0.84590

Random forest
β cde em em-stop oracle-bayes oracle base

0.1 0.74452 0.81298 0.75855 0.83828 0.86256 0.70959
0.2 0.79380 0.82491 0.81587 0.84890 0.86184 0.78116
0.3 0.81635 0.83740 0.83730 0.85523 0.86241 0.81532
0.4 0.83134 0.84247 0.84512 0.85664 0.86239 0.83497
0.5 0.84168 0.84815 0.85007 0.85924 0.86225 0.84587
0.6 0.84792 0.84878 0.85209 0.85830 0.86129 0.85254
0.7 0.85088 0.85198 0.85392 0.86015 0.86172 0.85746
0.8 0.85138 0.85402 0.85511 0.86095 0.86211 0.85912
0.9 0.85377 0.85540 0.85665 0.86175 0.86243 0.86148

Table 7.10: Classification context with F1-score (higher better) on 11 datasets. cde stand
for the class distribution estimation method (chapter 5 at page 43). The best method is
underlined and methods that are not significantly worse than the best (p-val > 0.05 with
paired t-test) are in bold.

Concerning the quantification learning problem (table 7.9), although cde is often better
than base when β is small, the cde adjustment method is never the best one among the
four adjustment methods, neither with logistic or with random forest. It is even often also
significantly worse than the best method. For quantification, the CDE method is a better
adjustment method than the naive base strategy but it is beaten by the two EM methods.
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It should be mentioned that concerning the mean square error measures computed for
the methods em, em-stop and base, the only difference between table 7.3 at page 67 and
table 7.9 is that the mse in table 7.3 is the average computed from 25 data sets and in
table 7.3 the mse is the average computed from only the 11 binary data sets.

Concerning the binary classification problems (table 7.10), the models recalibrated with
prior probability estimation computed by cde have bad F1-scores if we compare these F1
accuracies with the one that we obtain from the other strategies. When logistic models are
used, em-stop outperform the other strategies when β is small and, when β is bigger, base
becomes the best strategy. With random forest, we obtain the same result except that when
β ≤ 0.3 then em without stopping becomes better.

7.3 Discussion of the results

In this work, we have proposed two new algorithms for the quantification: em-stop and
acc-qp. The first method tries to avoid situations where the EM method diverges to a wrong
solution by stopping prematurely the iterations of the method. The second method proposes
to solve the system of linear equations that the ACC method has to resolve by a quadratic
program with constraints.

The two proposed methods were experimentally compared against other classical meth-
ods and three benchmark methods. These experiments were done on 25 well known real
datasets (table 7.1 at page 62) extracted from the UCI Machine Learning Repository. To
the best of our knowledge, this is the first comprehensive empirical comparison of the main
strategies to adjust prior probability shift.

The experiments showed that, compared with em-stop and base, the acc-qp method
underperforms significantly. But it should be noted that when β is small then acc-qp out-
performs the naive method which uses the proportion Nω

d /Nd counted in the source domain
as an estimation of P (Ỹ = ·). This bad precision can have several sources. One of them
could come from the estimate of the error on the training set done by cross-validation. In
this work we did 5-fold cross validations. It is known that this is a biased estimator and that
could be one of the reasons explaining the relative poor performance of the acc-qp method.

The second method proposed in this work is the em-stop adjustment method. Compared
to the other methods, it obtained very good results. Performances were relatively worse
when an accurate random forest was used with a small value of β. As we already explained,
em-stop tries to prevent the EM algorithm against instability. Sometimes it happens that it
stops too early the EM algorithm when the prior probability shift between the training and
the testing populations is high and when an accurate model is used (e.g. random forest).

We saw that for quantification, when β is close to one, it is better to use the simple base
method. Of course, most of the time we do not know in advance if the level of the prior
probability shift between the training and the testing environments is high. Therefore, it
would be interesting to study the possibility to use a statistical test like in [38] and, based
on p-value, decide to use the base method or a more advanced one.
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Chapter 8

Conclusion

In realistic settings, the prevalence of the output class may change between the situation
when the training set was generated and the situation when the predictive model is used
for scoring (i.e. P (Y = ·) 6= P (Ỹ = ·)). If the within-class probability density is conserved
(i.e. fX|Y (·|·) = f

X̃|Ỹ (·|·)) then we have prior probability shift and the task of estimating

P (Ỹ = ·) in the target environment is called quantification learning.
In chapter 2, we saw that prior probability shift can be considered as a particular type

of transfer problem where the within-class probability density can be transferred from the
source environment to the target environment. We did not find, in the current scientific
literature, a sufficiently generic definition of transfer learning able to take into account all
the types of transfer learning. Therefore, as contribution, we have proposed a new generic
definition for transfer learning (page 11).

If the purpose is not to estimate the new prevalence of the output variable in the target
environment but rather to adjust the classifier to the new environment than section 3.3
gives a method to recalibrate the models to the new distribution. In a still unpublished
paper Adjusting the Bias Term of Classifiers to Unknown Prior written by Prof. Marco
Saerens and Prof. Christine Decaestecker, a method to adjust directly the intercept term of
a softmax classifier is proposed. As a contribution, we proposed a new (and more simple)
way to adjust this term in presence of prior probability shift (equation (3.20) at page 32).

Three quantification algorithms were studied in this work:

• The adjusted classify and count (acc) approach (chapter 4).

• The class distribution estimation (cde) approach (chapter 5).

• The expectation-maximization (em) approach (chapter 6).

As we saw for instance in (4.9) at page 41, the adjusted classify and count method can
produce inconsistent results with the definition of a probability. Based on an idea introduced
by Prof. Johan Segers, as contribution of this work, we proposed a new version of the original
acc method based on quadratic program with constraints and called acc-qp (section 4.3 at
page 37).

As we saw empirically for instance in section 6.1.2 at page 51, the em algorithm is an
iterative method that can diverge to a wrong solution. A classical method in the scientific
literature is to deal with this problem by doing a predetermined small number of iterations
of the em algorithm. As contribution, we proposed in this work an adaptive method able to
stop the em iterations when em starts to diverge (section 6.2 at page 56) and called em-stop.
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The three standard quantification algorithms (acc, cde and em ) and the two proposed
methods (acc-qp and em-stop) were compared against three benchmark strategies on 25
datasets. Oracle-bayes and oracle are two methods which are cheating in the sense that
they are using information normally not available in real settings. The performances of
these two methods are somehow an upper bound for the other methods. Base (also called
classify and counting (cc)) is a strategy that estimates the new prevalence by applying
(without any adjustment) a classifier learned on data from the source environment on the
testing data from the target environment. The estimation of the new prevalence is then
obtained by counting the prediction of each class. Base represents a lower bound for the
five other methods. For reference, table 7.2 at page 7.2 gives the error that we would make
if the prevalence in the training was directly used as estimation of the prevalence in the
testing set.

The experimental results show that when β is close to one (low prior probability shift),
the performances of the naive method base are relatively very good. The more complex
methods become superior when the intensity of the prior probability shift increases.

Surprisingly, we were not able to obtain a good result with acc methods while these
methods are often cited in the scientific literature. As future work, it would be interesting
to study acc algorithms more deeply in order to identify the cases in which they are superior.
We proposed in this work acc-qp as contribution to solve the issue that the acc algorithm
can produce invalid solutions. To deal with the issue that acc does not guarantee to return a
vector of values in [0, 1] and summing to 1, [16] proposes to clip the probability estimations
(i.e., equal to 1 every value higher than 1 and to 0 every value lower than 0), and afterwards
rescale them so that they sum up to one. As contribution for a future work, it would be
interesting to compare empirically this method with our method acc-qp. The accuracy of
the acc method seems to be impacted by the precision of the estimation of the confusion
matrix. In this work, K = 5 cross validation is used. It would be interesting to study the
impact of another estimation method of the confusion matrix.

The em like methods are becoming superior when β is decreasing to zero (higher prior
probability shift). Future works on em should focus on cases with high prior probability
shift. When a logistic model is used, the proposed em-stop method is superior and when
random forest is used, the standard em method becomes the best. It seems that when
the accuracy of the model is bad (e.g. logistic model on no-linear real datasets), the em-
stop is able to avoid the adjustment to diverge. When the accuracy of the model is better
(e.g. random forest on no-linear real datasets), then the em-stop method stops too quickly
the iterations of the adjustment algorithm and is therefore beaten by the standard em. Em
seems to be impacted by the accuracy of the model. As a future work, it would be interesting
to make a systematic empirical study on this topic.
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Appendix A

Detailed experimental results
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Figure A.1: Quantification error (mse) of logistic regression models (part 1)
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Figure A.2: Quantification error (mse) of logistic regression models (part 2)
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Figure A.3: Classification error (F1 score) of logistic regression models (part 1)
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Figure A.4: Classification error (F1 score) of logistic regression models (part 2)
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Figure A.5: Quantification error (mse) of random forest models (part 1)
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Figure A.6: Quantification error (mse) of random forest models (part 2)
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Figure A.7: Classification error (F1 score) of random forest models (part 1)
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Figure A.8: Classification error (F1 score) of random forest models (part 2)
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