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Abstract. Telecommunication companies are evolving in a highly com-
petitive market where attracting new customers is much more expensive
than retaining existing ones. Though retention campaigns may be used to
prevent customer churn, their success depends on the availability of accu-
rate prediction models. Churn prediction is notoriously a difficult prob-
lem because of the large amount of data, non-linearity, imbalance and
low separability between the classes of churners and non-churners. In this
paper, we discuss a real case of churn prediction based on Orange Bel-
gium customer data. In the first part of the paper we focus on the design
of an accurate prediction model. The large class imbalance between the
two classes is handled with the EasyEnsemble algorithm using a random
forest classifier. We assess also the impact of different data preprocessing
techniques including feature selection and engineering. Results show that
feature selection can be used to reduce computation time and memory
requirements, though engineering variables does not necessarily improve
performance. In the second part of the paper we explore the application
of data-driven causal inference, which aims to infer causal relationships
between variables from observational data. We conclude that the bill
shock and the wrong tariff plan positioning are putative causes of churn.
This is supported by the prior knowledge of experts at Orange Belgium.
Finally, we present a novel method to evaluate, in terms of the direc-
tion and magnitude, the impact of causally relevant variables on churn,
making the assumption of no confounding factors.

Keywords: Churn prediction · Machine learning · Big data · Causal
inference

1 Introduction

In recent years, the number of mobile phone users had a massive increase, reach-
ing more than 3 billion users worldwide. The number of mobile phone service sub-
scriptions is greater than the number of residents in several countries, including
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Belgium [13]. Telecommunication companies are evolving in a saturated market,
where customers are exposed to competitive offers from many other companies.
Hadden et al. [11] showed that attracting new customers can be up to six times
more expensive than retaining existing ones. This led companies to switch from a
sale-oriented to a customer-oriented marketing approach. By building customer
relationships based on trustworthiness and commitment, a telecommunication
company can reduce churn, therefore increasing benefits through the subsequent
customer lifetime value. A typical marketing strategy to improve customer rela-
tionship is to conduct retention campaigns whose effectiveness depends on accu-
rate profiles of customers (e.g. in terms of attrition risk).

Churn detection is nowadays performed by most major telecommunication
companies using machine learning and data mining [5,12,18,28–31]. Churn pre-
diction is a notoriously difficult learning task because of the large quantity of
data, non-linearity, imbalance and low separability between the classes of churn-
ers and non-churners. The first part of the paper assesses several machine learn-
ing methods and strategies by using a large dataset measuring the churn behav-
ior of Orange Belgium telecom clients. Estimating the probability of churn of
a customer is however not sufficient if we wish to design an effective reten-
tion campaign (e.g. based on incentives). For this reason, the second part of
the paper explores the adoption of causal techniques to infer from observa-
tional data the most probable causes of a churn behavior. Causal analysis is
usually conducted through controlled randomized experiments [7], by evaluating
the impact of a potentially causal variable on the target variable. In the con-
text of customer relationship management, controlled experiments are possible
through the retention campaigns, where the offers made to the customers act
as variable manipulations. Though this reduces the risk of confounding factors,
access to such data is typically difficult and expensive. For this reason, we have
recourse to data-driven inference approaches, which aim to reconstruct causal
dependencies based on the statistical distribution of the considered variables.
Most existing approaches however make different assumptions about the data
distributions which are difficult to assess in practice. For this reason, we adopt a
“wisdom of the crowd” approach by running in parallel several state-of-the-art
approaches and combining their results for final considerations. Also to assess
the quality of the obtained putative causes we estimate from data the causal
impact of every single cause on churn probability.

We may summarize the main contributions of the article as follows.

– Assessment of a state-of-the-art churn prediction pipeline and study of the
impact of several model variants (e.g different feature sets and different sub-
scription contracts) (Sect. 2).

– Application of causal strategies to infer putative causes of churn from obser-
vational data (Sect. 3).

– Assessment of the impact of putative causal variables on churn (Sect. 3).
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The rest of this paper is structured as follows. In Sect. 2 we describe the
dataset, the machine learning pipeline and the results of churn prediction. In
Sect. 3 we provide a causal analysis of churn. Conclusion and future work per-
spectives are discussed in Sect. 4.

2 Churn Prediction

This section describes the Orange dataset and the machine learning pipeline
designed to assess a number of strategies and models for predicting the proba-
bility of customer churn.

2.1 Data

The dataset is a monthly report of Orange Belgium customers’ activity covering
a 5 months time window in 2018. For confidentiality reasons, we will disclose here
only some high-level details about the dataset. The dataset contains 73 features
about customer activity including subscription type, used hardware, mobile data
usage (in MB), number of calls/messages and some socio-demographic informa-
tion. The dataset has 5.3 million entries (about 1 million entries per month).
The target variable, denoting churn, is binary and takes the true value if the
client is known to have churned in the two months following the input times-
tamp. The churn prediction problem is highly unbalanced, since there are far
more non-churners than churners.

Two kinds of subscriptions are present in this dataset: SIM-only1 and loyalty.
The first refers to a subscription where the customer can quit at any time with
no cost. In the loyalty contract the customer is rewarded (e.g. discount on the
purchase of a mobile phone) in exchange of a fixed contract duration (e.g. 24
months). If the customer decides nonetheless to stop his subscription before
the term of the contract, he has to pay back the reward. There are about 5
million entries in the SIM-only dataset, and about 250,000 entries in the loyalty
dataset. In this paper, we will mainly focus on SIM-only contracts, given its
broader impact on the Orange customer base and the larger statistical power
due to the availability of more samples. Some experiments have been conducted
anyway on both contract types, to understand the differences in terms of churn
behavior.

In order to provide a visual description of the informative content of the
dataset, let us consider in Fig. 1 two variables having a clear relation with churn.
The horizontal axis indicates whether a customer has a cable connection while
the vertical axis denotes the payment responsible (taking a “No” value when
someone else than the customer, e.g. a parent, pays the bill). It appears that
most Orange Belgium customers do not have a cable connection and are respon-
sible for the payment. The color of the spots indicates the churn rate, with a
lighter color denoting a higher probability of churn2. The impact of both binary
1 SIM-only indicates that the customer bought no other product than the SIM card.
2 For confidentiality reasons, the precise value of the churn rate cannot be disclosed.
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variables appears clearly, with a significant difference in churn rate between the
two extremes. The univariate impact of each variable on churn can be quantified
in terms of odds ratio, measuring the increase of the odds of churn once exposed
(i.e. when the customer is responsible for the payment, or when there is a cable
connection). The odd ratios for the payment responsible and the cable connec-
tion are 0.917 and 0.839, respectively. This indicates that a “Yes” value for both
variables is associated to a reduced risk of churn.
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Fig. 1. Interaction between cable connection and payment responsible. A customer is
not responsible for payment if someone else (e.g. a parent) pays the invoice in her stead.
The color of the spots denotes the churn rate, whereas its area denotes the number of
customers.

Another interesting visualization concerns the relation between tenure (i.e.
the duration of the current subscription) and churn rate (Fig. 2)3. The curve
shows a negative correlation between the churn rate and tenure. Note that
the surge in churn rate corresponds to the term of the contract for loyalty
customers.

2.2 Machine Learning Pipeline

Three different learning tasks are created by stratifying the dataset: one con-
taining the loyalty contracts, one containing the SIM-only contracts, and one
containing the SIM-only contracts with additional variables (denoted SIM-only
Δ). The large unbalancedness of the dataset has been addressed by adopting the
EasyEnsemble strategy [16] which consists in training a number (in our case 10)
of learners on the whole set of positive instances (churners) and an equally sized
random set of negative instances. Based on our previous experience on related

3 For confidentiality reasons, the axes scales are concealed.
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Fig. 2. Churn rate as a function of the tenure (the duration of the current subscription).
The spike on the left of the plot corresponds to the end of the loyalty period for loyalty
customers.

largely unbalanced tasks (notably fraud detection [3,4]) we considered as learner
only Random Forests.

In what follows we report the results of a number of assessments evaluating
the impact of

1. variable selection, based on the feature importance returned by Random For-
est;

2. the addition of engineered features: for each time-dependent quantity (e.g.
total duration of calls, or mobile data usage) we created 2 additional features
measuring the difference and the ratio between two consequent monthly val-
ues, respectively;

3. the type of contract (SIM-only vs. loyalty).

The high computational cost of training on such a large dataset restricts the
number of configurations we can assess. We limit the number of selected variables
to 20, 30 or all variables. Also, we do not explore the difference variables for
loyalty contracts. Overall we consider 9 different experiment configurations.

Three-fold cross-validation is used to assess the accuracy on the training set
(first 4 months). The last month of data is used as a test set for each of the
three datasets, in order to check the robustness of the prediction model (e.g.
with respect to potential drifts or non-stationarity).

The performance of the different models is evaluated using three different
measures: the receiver operating characteristic (ROC) curve, the precision-recall
(PR) curve, and the lift curve [27]. While the ROC curve and the PR curve
are widely used in conventional classification, the lift curve is of more practi-
cal interest in evaluating churn prediction. Since a customer churn retention
campaign focuses on a limited amount of customers, the lift curve reports the
expected performance of the model as the number of customers included in the
campaign varies. From these curves, we derive the area under the ROC curve
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(AUROC), the area under the PR curve (AUPRC) and the lift at different
thresholds (1%, 5%, and 10% of customers included). There is some evidence in
the literature [6,9,22] that the ROC curve is not a reliable metric on unbalanced
data. Moreover, since the area under the ROC curve depends on all possible deci-
sion thresholds, it does not correspond with the objective of the churn campaign:
finding a small group of customers with high churn probability (low false-positive
rate). We report the AUROC to be consistent with the churn prediction litera-
ture, but our conclusions are mainly based on the other performance metrics.

2.3 Results and Discussion

Table 1 and 2 report the cross-validation and the test accuracy, respectively.
Based on those results, a number of considerations can be made

– by reducing the number of features to 30, the accuracy does not deteriorate
significantly. This is good news for our industrial partner since a compact
churn model is more suitable for production.

– though adding engineered features may be beneficial, this occurs only if a
feature selection is conducted beforehand.

– surprisingly, the accuracy is higher for the test set (Table 2) than in cross-
validation (Table 1). Our interpretation, confirmed by visualization in the
space of the two first principal components, is that the drift of the data
makes the classification easier.

– regarding the type of contracts, churn is slightly easier to predict in the loyalty
dataset than SIM-only, due to the greater importance of time-related vari-
ables. Indeed, the churn is significantly higher at the end of the mandatory
period of a loyalty contract, facilitating the prediction process.

We compared our results on the SIM-only dataset with other published stud-
ies on churn prediction [5,12,18,28–31]. We achieve similar results in terms of
area under the ROC curve and lift.

Table 1. Summary of the cross-validation results. Highest values for each type of
contract and for each evaluation measure are underlined.

SIM-only SIM-onlyΔ Loyalty

20 30 All 20 30 All 20 30 All

AUROC 0.64 0.73 0.74 0.74 0.74 0.70 0.76 0.78 0.77

AUPRC 0.04 0.08 0.08 0.09 0.09 0.07 0.13 0.16 0.15

Lift at 10% 2.10 3.16 3.39 3.39 3.44 3.01 3.22 3.57 3.50

Lift at 5% 2.41 4.11 4.52 4.49 4.57 3.90 3.71 4.30 4.18

Lift at 1% 3.24 7.58 8.36 8.80 8.67 6.79 5.00 6.37 6.11
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Table 2. Summary of the results of prediction experiments on the test set. Highest
values for each type of contract and for each evaluation measure are underlined. Using
only 20 variables decreases the performances most often.

SIM-only SIM-only Δ Loyalty

20 30 All 20 30 All 20 30 All

AUROC 0.66 0.73 0.73 0.72 0.73 0.69 0.74 0.76 0.76

AUPRC 0.05 0.10 0.10 0.10 0.10 0.08 0.15 0.19 0.18

Lift at 10% 2.25 3.34 3.41 3.27 3.42 3.03 2.96 3.40 3.30

Lift at 5% 2.64 4.49 4.68 4.48 4.67 4.09 3.51 4.22 4.02

Lift at 1% 4.29 9.20 9.53 10.09 9.95 7.67 4.66 6.65 6.16

3 Causal Analysis

The selection procedure discussed in the previous section returns the most rele-
vant variables for predicting the potential churners. Though such variables pro-
vide useful information for designing a predictor, they are not necessarily the
ones to manipulate (e.g. by giving incentive) if we wish to reduce the churn risk.
For example, an increase in the number of contracts registered by a customer
may be strongly associated with a decrease of churn. However, a hypothetical
churn retention action that would sell additional contracts might fail, if cus-
tomer satisfaction has a causal effect both on the number of purchased contracts
and the propensity to churn. In this case, the predictive variable (number of
contracts) and the churn have a common latent cause (customer satisfaction).
Manipulating the number of contracts will therefore not affect churn. Different
tools are needed to discover true causal relationships between variables and will
be discussed in what follows.

3.1 Causal Inference Strategy

We use the dataset of Sect. 2 and perform the causal inference separately on the
SIM-only and loyalty customers since it is supposed that the causes of churn are
at least partially different between loyalty and SIM-only contracts. All 5 months
of data are used. To decrease computation time, only the first 30 variables in
the ranking of the random forest trained in Sect. 2 are used. A random under-
sampling has been applied to reach decent computation times and to perform
class balancing. The positive class (churners) is kept fixed and a random subset
of the negative class is randomly selected, such that the resulting dataset con-
tains the same number of positive and negative observations. Further random
undersampling is then performed, with a sample size depending on the inference
algorithm.

The rationale of this experiment consists in applying several causal inference
techniques, which give different types of results in various forms, and extract a
consensus, if any, in the light of the different assumptions each model puts on
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the data. This strategy is called triangulating [14] and takes advantage of the
fact that the different causal inference methods rely on different assumptions,
thus increasing the validity of our results.

The considered causal inference algorithms are: PC [24], Grow-shrink
(GS) [17], Incremental Association Markov Blanket (IAMB) [26], minimum
Interaction Maximum Relevance (mIMR) [2] and D2C [1]. PC infers the equiv-
alence class of causal graphs faithful to the dataset, GS and IAMB infer the
Markov blanket of the churn variable, and mIMR and D2C return the direct
causes of churn.

The PC [24] algorithm is slow when the number of samples is large since
the whole causal network is inferred. Therefore, we restrict the dataset to 10,000
samples for this algorithm. The result is given under the form of a completed par-
tial DAG (CPDAG) representing an equivalence class of directed acyclic graphs
(DAG) [25].

The GS and IAMB algorithms [17,26] both infer the Markov blanket of a
target variable, the churn in our case. These algorithms therefore return the
direct causes, the direct effects and the direct causes of the direct effects (also
called spouses). For these two algorithms, the entire set of positive samples is
used, along with a subset of the same size of negative samples. IAMB differs
from GS in that it is more sample-efficient.

Two implementations of the mIMR algorithm [2] are used: one based on his-
tograms to estimate mutual information, and another assuming Gaussian distri-
butions, thus allowing a closed-form formula for the computation of the mutual
information [19]. For the first implementation, the dataset is restricted to 10,000
samples, due to the computational cost of the histogram-based estimator. In
the second implementation, 100,000 samples from SIM-only are used, and all
samples from loyalty are used. The results are provided as a list of the first 15
selected variables, accompanied by the gain provided by each variable at each
iteration of the algorithm.

The D2C learning algorithm is trained using randomly generated DAGs, as
described in [1]. We assume a Markov blanket of 4 variables when constructing
the asymmetrical features. Given the high computational cost of feature extrac-
tion, 2,000 samples are used from the customer dataset. The results are provided
as the predicted probability for each variable to be a cause of churn.

For the first three methods (PC, IAMB, and GS), we use the R package
bnlearn [23] for independence tests using mutual information and asymptotic
χ2 test [8]. For mIMR and D2C, we use the R package D2C [1]. In all cases, a
false-positive rate of 0.05 is chosen for statistical tests of independence.

Before proceeding with the results, it is worth reminding that all the 5 causal
inference algorithms rely on specific assumptions. While PC, GS, and IAMB
assume causal sufficiency and faithfulness, mIMR and D2C rely on more specific
conditions.

Causal sufficiency denotes the absence of unmeasured confounder, and is
likely to hold given the large number of variables (73) and the variety of infor-
mation they provide (service usage, socio-demographic, type of subscription,
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etc). Confounding could be further reduced by including an indicator of service
quality, which is absent from our dataset. See Sect. 3.3 for a more detailed review
of our prior knowledge on the causes of churn.

The assumption of faithfulness states that any (conditional) independence
found in the probability distribution is reflected by the d-separation of the rele-
vant variables in the corresponding causal graph. Faithfulness in the case of the
PC algorithm is discussed in [15].

mIMR is based on the assumption that direct causes form “unshielded col-
lider” configurations together with the target. Since in such configurations direct
causes are marginally independent and conditionally dependent, mIMR may
exploit this pattern to prioritize direct classes in the ranking. Though such an
assumption is hardly satisfied in real settings, the approach allows to introduce
a causal criterion in a feature selection algorithm for large dimensional settings.
The adoption of mIMR requires as well the choice of a mutual information esti-
mator (typically Gaussian for its low-variance and robustness in non-normal
configurations [19]).

D2C relies on the existence of asymmetric descriptors of the statistic depen-
dency between a cause/effect pair. This is possible under some specific condi-
tions, like the existence of a single edge connecting the Markov blanket of the
cause and the effect and the existence of an unshielded collider between the cause
(effect) and the related spouse. While the first assumption is probably not true
in our setting, the second is satisfied by the fact that no descendant of the target
variable is included in the dataset.

3.2 Sensitivity Analysis

Once causally relevant variables are inferred, it is worth evaluating the sensi-
tivity of the target to their manipulation. In Sect. 2 we learned a predictive
algorithm (random forest) to estimate P (Y | X), i.e. the conditional proba-
bility distribution of the churn variable Y given the set of customer variables
{X1, . . . , Xn} = X. Let us now focus on a putative cause Xi ∈ X and assume
causal sufficiency, i.e. all possible confounders are part of the set of measured
variables X. In order to assess the sensitivity of Y to Xi, we measure the change
in P (Y | X) once the distribution of Xi is modified. This boils down to esti-
mate the natural direct effect [21], which quantifies the causal effect of Xi on Y
not mediated by any other variable, while the other variables are still distributed
according to their natural distribution. This corresponds to answering the causal
question “What happens if only Xichanges?”.

Since we are interested in the effect of a shift in the distribution of Xi, we
add ασi to the value of Xi, where σi is the standard deviation of Xi and α is a
parameter of the intervention. The natural direct effect is

NDExi
= NDExi

(Y ) − E[Y ]
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where NDExi
(Y ) is defined as the expected value of Y under “natural” inter-

vention on Xi, i.e. by letting other variables be distributed according to their
original distribution:

NDExi
(Y ) =

∫
P (x)P (Y = 1 | x1, . . . ,do(xi + ασi), . . . , xn) dx.

We know that all possible back-door paths between Xi and Y are blocked
since, by causal sufficiency, X = {X1, . . . , Xn} includes all possible confounders.
Therefore, using rule 2 of do-calculus [20] we can estimate NDExi

(Y ) from obser-
vational data alone.

Given a dataset of n variables and N examples {(x(j)
1 , . . . , x

(j)
n ; y(j))}1≤j≤N ,

the average prediction of a model f on this dataset is an estimator of the expected
value of Y :

E[Y ] ≈ 1
N

N∑
j=1

f(x(j)
1 , . . . , x(j)

n )

For each variable Xi the expected value of Y under intervention can be
approximated as

NDExi
(Y ) ≈ 1

N

N∑
j=1

f(x(j)
1 , . . . , x

(j)
i + ασi, . . . , x

(j)
n )

We applied this method on the SIM-only dataset, on the 30 variables hav-
ing the largest importance according to the random forest models. The causal
effect is computed for α = 1 and α = −1. The assumption of causal sufficiency
(Sect. 3.1) is a necessary condition for the validity of this method. Note that the
dataset we use in practice also contains discrete variables. These variables are
left out of this analysis since the method is suited only to continuous variables.

3.3 Prior Knowledge

Before presenting the results of causal inference, it is interesting to summarize
the knowledge of the Orange experts on the possible reasons for customer churn,
elicited by means of several discussions and interviews. Those experts report four
main causes of churn:

Bill shock: this occurs when a customer has an unusually large service usage,
which results in an important “out of bundle” amount (i.e. the client is
charged much more than usual). This triggers a reaction from the customer
inducing an increased risk of churn. This scenario is well understood and
verified in practice. It is believed to be the most important cause of churn.
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Customer dissatisfaction: multiple factors influence customer satisfaction,
including quality of service and network quality. A customer having numer-
ous cuts of network connection during phone calls, or unable to use properly
Orange online services, will be more likely to seek better alternatives else-
where.

Wrong positioning: choosing the right tariff plan suited to one’s service usage
habits is sometimes difficult. On the one hand, if not enough call time is
provisioned, an “out of bundle” amount is likely to be charged at the end
of the month. On the other hand, an expensive tariff plan results in a high
fixed cost for the customer. When the needs of a customer do not correspond
to the chosen tariff plan, we say that the customer is wrongly positioned. A
wrong positioning results in most cases to a higher bill than expected, and is
a significant cause of churn.

Churn due to a move: it is common to choose a product bundle from a
telecommunication company comprising a subscription for mobile phone,
landline phone, television, and internet connection. In this case, the sub-
scription is tied to the particular place of domicile of the customer. When the
client moves to another place, it is quite common to also change for another
telecommunication service provider. Therefore, this is a significant cause of
churn, albeit of a different nature from the other settings exposed above.

While these potential causes of churn pertain to the whole customer base,
the loyalty customers typically have a much higher churn rate at the end of
the mandatory period of their contract, thus the tenure (the time since when
a customer uses Orange’ services) is an important cause of churn for them. On
SIM-only customers, expert knowledge also indicates that the tenure influences
churn: a new customer is more likely to churn than a long-time customer since
it is less committed to the company.

These different settings are described informally, and their translation to the
formal definitions of causality is not straightforward. We wish to find a mapping
between the events believed to be causes of churn and specific instantiations of
measurable random variables. In the case of the first setting (bill shock), we can
reasonably assume that variables measuring the “out of bundle” amount of the
customer is a faithful proxy for bill shock. Similarly, customer satisfaction can be
estimated using, for example, the number of network cuts during phone calls, or
the number of calls to the customer service. The wrong positioning can also be
numerically estimated, given the tariff plan of the client and its average service
usage. The last setting (churn due to a move) is much more difficult to account
for, as it is not directly related to the interaction between the client and the
telecommunication services.

In the dataset available for this study, the only measured variables that trans-
late to potential causes of churn are the “out of bundle”, the tariff plan and ser-
vice usage (phone calls, messages, mobile data). We have no measure for network
quality, customer satisfaction, or propensity to move soon. Also, the wrong posi-
tioning is not explicitly encoded and has to be inferred by the causal inference
model from the average service usage and the current tariff plan.
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3.4 Results of Causal Inference

The outcome of the inference algorithms is summarized in Figs. 3 and 4. Each
of the possible causes of churn is represented by an ellipse, annotated with the
algorithms that output this variable. For both SIM-only and loyalty, the PC
algorithm infers an intricate causal graph but where the churn variable is dis-
connected from all others. Note that GS and IAMB output the Markov blanket,
and not only direct causes. Since the output of mIMR is a ranking, we use back-
ground knowledge to determine how many of the top-ranked variables should
be considered as inferred causes, based on their redundancy. In the case of the
histogram-based mIMR, the first variables in the ranking are complementary, but
the 10th variable (for SIM-only) and the 12th variable (for loyalty) are mostly
redundant with the other variables higher in the ranking. This indicates that
the variable interaction is low and the remaining variables lower in the ranking
should not be considered as causes. For the mIMR with Gaussian assumption,
there is a significant drop in the gain between the 7th and the 8th ranked vari-
ables in the SIM-only dataset, and between the 8th and 9th ranked variables
in the loyalty dataset. We consider that as a criterion for considering only the
7 (SIM-only) and 8 (loyalty) first ranked variables as inferred causes. D2C out-
puts a probability of being a cause of churn, for each variable. For the SIM-only
dataset, we selected the tariff plan, the province of residence and the data usage
as causes inferred by D2C, and for the loyalty dataset, we selected the number
of contracts, the province, and the tenure. These variables display a significantly
higher predicted score than the other variables.

Churn

Tenure

Tariff plan

Out of bundle Age

Data usage Messages, voice calls

Number contracts Province

GS, mIMR H & G

IAMB, D2C, mIMR H

GS, mIMR G mIMR G

GS, D2C, mIMR H GS, mIMR H

GS, mIMR G D2C, mIMR H

Fig. 3. Summary of results of causal inference on SIM-only dataset. Each variable
is annotated with the algorithms predicting it to be a cause of churn. Light gray
ellipses represent continuous variables, and dark gray ellipses represent discrete vari-
ables. mIMR H stands for the histogram-based estimator, and mIMR G for the esti-
mator with Gaussian assumption.
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Churn

Tenure

Tariff plan

Data usage

Number contracts

Age

Messages, voice calls

Province

D2C, mIMR H & G

D2C, mIMR H & G

IAMB

mIMR H

GS, D2C, mIMR H

IAMB, GS

D2C, mIMR H & G

Fig. 4. Summary of results of causal inference on loyalty dataset. Each variable is anno-
tated with the algorithms predicting it to be a cause of churn. Light gray ellipses repre-
sent continuous variables, and dark gray ellipses represent discrete variables. mIMR H
stands for the histogram-based estimator, and mIMR G for the estimator with Gaussian
assumption.

For the SIM-only dataset (Fig. 3), the “out of bundle” and data usage vari-
ables are reported as causes by mIMR and D2C, and as members of the Markov
blanket by GS. This is in line with our prior belief that bill shock is a major
cause of churn. We could expect the “out of bundle” variable to stand out more
explicitly, but it is only given by mIMR with Gaussian assumption. However, the
distribution of the “out of bundle” can roughly be modeled as the exponential of
a Gaussian. It is thus easy to understand why the other inference methods, that
make different statistical assumptions, fail to report the causal link to churn.

The tariff plan and the “out-of-bundle” variables together provide a represen-
tation of the tariff plan positioning of the customer. For the SIM-only dataset,
these two variables are reported as causes of churn by mIMR and D2C and are
also members of the Markov blanket according to GS and IAMB. This confirms
our hypothesis that wrong positioning is an important cause of churn.

Note that the “out of bundle” is not reported by any algorithm for the loyalty
dataset (Fig. 4). This is consistent with the fact that loyalty customers are not
able to churn in the mandatory period of their contract, thus churn related to
bill shock is less represented in this dataset.

The two last causes of churn according to Sect. 3.3 are customer satisfaction
and churn due to a move. None of the measured variables are direct proxies for
these two putative explanations of churn. Better results could be obtained by
using relevant variables such as, for example, the number of calls to the customer
service, a measure of the network quality, the number of network cuts during a
call, and so on. Adding these variables would reduce latent confounding if the
underlying causal hypotheses are true. We suspect that the importance of the
province in Figs. 3 and 4 is an indication that network quality is an important
cause of churn (the network quality is known to vary between different regions
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of Belgium). However, the scope of this study limited us to the set of variables
presented in Sect. 2.1.

If we use the expert knowledge to assess the accuracy of the causal inference
algorithms, mIMR H and D2C algorithms seem to better infer relevant variables
as direct causes. Indeed, the bill shock and the wrong positioning imply that the
“out of bundle”, the tariff plan and the data usage are likely causes of churn. The
two latter are output by mIMR H and D2C in the SIM-only dataset, whereas
mIMR G outputs the “out of bundle”. In the loyalty dataset, D2C and mIMR
correctly avoid reporting the “out of bundle” or the data usage as causes of churn,
but correctly report the importance of the tenure. A model similar to mIMR H
or D2C, but able to correctly handle variables with more difficult distributions
such as the “out of bundle” variable, would be ideal.

Finally, it is important to consider that these results may suffer from sam-
pling bias. Given that we use a crude random undersampling technique, some
causal patterns in the discarded positive samples may be under-represented in
the resulting training set. This is especially the case for the PC algorithm (using
10,000 samples), the first implementation of mIMR (10,000 samples), and D2C
(2,000 samples). And even though the remaining algorithms use far more sam-
ples, none of them can take into account the entire set of non-churners. Fur-
thermore, we have no theoretical guarantee that an even class ratio is best for
inferring causal patterns. Reducing sampling bias in causal analysis requires the
conception of new techniques that are outside the scope of this article.

3.5 Results of Sensitivity Analysis

The results of the variable sensitivity analysis are shown in Figs. 5 and 6. Each
variable is represented as a bar whose color depends on the category of variable:
subscription, calls and messages, mobile data usage, revenue, customer hard-
ware, and socio-demographic. Some variable names have been anonymized for
confidentiality reasons. Also, only variables inducing the most significant change
in the distribution are shown (p < 10−10 with a two-sided t-test).

All the numerical variables inferred as possible causes of churn appear to
influence the predictions of the model, albeit in a non-linear manner as indicated
by the lack of symmetry between Figs. 5 and 6. On the one hand, the tenure and
the number of contracts are observed to be monotonically associated with the
churn probability, since they appear in both figures in opposite directions. On
the other hand, variables related to the amount paid by the customer and the
data usage cause more churn when they are increased, but the opposite is not
true. Note that the tariff plan and the province, although reported as possible
causes in Fig. 3, are not present in Figs. 5 and 6 since they are categorical, thus
unsuitable for this analysis.
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In Appendix A (Figs. 7 and 8), we report the entire distribution of predicted
probability of churn for each shifted variable, instead of reporting only the dif-
ference between the means as in Fig. 6 and 5. This shows other characteristics of
the causal impact of these variables on churn, such as the change in the spread
of the probability distribution. Note that, while the churn is highly unbalanced
in the original dataset, the predicted probability of churn is balanced. This is
due to the EasyEnsemble methodology, which generates balanced subsets of the
original training set.

The causal impact of a smaller intervention is reported in Appendix A, Figs. 9
and 10. The intervention consists in adding or subtracting 0.5σi from each vari-
able separately, instead of σi as in Figs. 5, 6, 7, and 8. We observe that some
variables have almost the same impact as with a shift of 1 sigma (e.g. the out of
bundle variables), while others have significantly less impact, such as the num-
ber of contracts. In the latter case, this is due to the discrete distribution of
the number of contracts. Other variables, such as D13, have a proportionally
reduced impact on the predicted probability of churn.

Number contracts 2
Number contracts 3

Tenure 1
Tenure 2

OOB 4
U1
R1
S7
U4
S8
R6
R5

OOB 3
OOB 1
OOB 2

−0.06 −0.04 −0.02 0.00 0.02
Difference of mean predicted churn rate when increased

Legend Revenues Subscription Usage

Fig. 5. Difference of mean predicted
probability of churn when a standard
deviation is added separately to each
variable. Run on the SIM-only dataset.
Only variables inducing the most signifi-
cant change in the distribution are shown
(p < 10−10 with a two-sided t-test).

C8

S2

H16

H15

C7

C5

Tenure 2

Tenure 1

C6

Number contracts 2

D13

Number contracts 3

0.00 0.05 0.10 0.15
Difference of mean predicted churn rate when decreased

Legend Calls Hardware Sociodemo Subscriptions

Fig. 6. Difference of mean predicted prob-
ability of churn when a standard devi-
ation is subtracted separately from each
variable. Run on the SIM-only dataset.
Only variables inducing the most signifi-
cant change in the distribution are shown
(p < 10−10 with a two-sided t-test).

4 Conclusion

Churn prediction in the telecommunication industry is notoriously a hard task
characterized by the non-linearity of variables, large overlap between churn-
ers and non-churners, and class imbalance. Predictive modeling of churn was
achieved with a random forest classifier and the Easy Ensemble algorithm. In
a series of experiments on churn prediction, we assessed the impact of vari-
able selection, type of contract and use of engineered features. The results show
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that variable selection helps reducing computation time if at least 30 features
are selected. Also, the engineering of new features may be beneficial if variable
selection is applied. We explored the application of causal inference from obser-
vational data. More specifically, we applied 5 different causal inference meth-
ods, namely PC, Grow-Shrink (GS), Incremental Association Markov Blanket
(IAMB), minimum Interaction Maximum Relevance (mRMR), and D2C. The
results of these algorithms are heterogeneous yet consistent with prior knowl-
edge of the causes of churn. The direction of the causal influence of variables on
churn was estimated through a novel method of sensitivity analysis. This method
is based on the assumption that no latent variables are confounding factors of
churn and the variable under inspection. This method showed that some vari-
ables have a non-monotonic causal influence on churn, which is consistent with
expert knowledge.

5 Future Work

Results of causal analyses are difficult to validate without the ability to perform
experiments. In this study, we are limited to compare our findings with prior
knowledge of experts. Retention campaigns provide a promising opportunity to
validate causal hypotheses. They can emulate a variable manipulation by offering
risky customers targeted promotions. We plan to conduct such experiments in
the future through collaboration with Orange Belgium.

Uplift modeling is an interesting approach to incorporate causal consideration
in churn prediction [10]. In uplift modeling, the customers are ranked according
to the diminution of their probability of churn when subject to the campaign,
as opposed to usual churn modeling that ranks customers according to their
probability of churn. Retention campaigns will allow assessing the effectiveness
of this approach.

Another limitation of our approach is the arbitrary decision threshold we
fixed between inferred causes and non-causes for the mIMR and D2C algorithms.
Since these two methods output a score for each variable, we can instead com-
pute a performance curve (e.g. ROC, precision-recall) from the predicted scores
and the ground truth provided by experts. Although this is not suitable for
performing causal discovery per se, this allows to quantitatively evaluate causal
inference algorithms.

Undersampling and class balancing are used to ensure the computational
tractability of causal inference. However, this may result in sampling bias, and
its effect on the results has not been formally assessed. We can obtain more
robust and stable results by performing undersampling and the causal inference
experiments multiple times, as in the EasyEnsemble methodology.
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A Additional Figures on Sensitivity Analysis
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Legend
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Fig. 7. Distribution of the predicted
probability of churn when a standard
deviation is added separately to each
variable. Run on the SIM-only dataset.
Only variables inducing the most signifi-
cant change in the distribution are shown
(p < 10−10 with a two-sided t-test).
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Fig. 8. Distribution of the predicted prob-
ability of churn when a standard devi-
ation is subtracted separately from each
variable. Run on the SIM-only dataset.
Only variables inducing the most signifi-
cant change in the distribution are shown
(p < 10−10 with a two-sided t-test).
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Fig. 9. Difference of mean predicted
probability of churn when half a standard
deviation is added separately to each
variable. Run on the SIM-only dataset.
Only variables inducing the most signifi-
cant change in the distribution are shown
(p < 10−10 with a two-sided t-test).
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Fig. 10. Difference of mean predicted
probability of churn when half a stan-
dard deviation is subtracted separately
from each variable. Run on the SIM-only
dataset. Only variables inducing the most
significant change in the distribution are
shown (p < 10−10 with a two-sided t-test).
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