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Abstract

An anesthesiologist may control the level of consciousness of a patient undergoing surgery by appro-
priately dosing hypnotic drugs. The information provided by the monitoring devices may be utilized
in order to accomplish this task. One such monitor provides a dimensionless quantity derived from
the electroencephalogram called bispectral index (BIS), which could quantify the level of awareness of
the patient. This article discusses the use of machine learning techniques to implement a predictive
model of the BIS based on the variation of the hypnotic drugs. Such a model learned from a database
of recorded operations can aid real-time decision making during the course of an operation. In order
to deal with inter-individual variability, the proposed model takes into account patient physiology as
well as the reactions of the patient during the early phases of the operation. Two models of the bis-
pectral index behavior are assessed and compared in this work: a linear predictor and a local learning
predictor. These prediction models were software implemented and their accuracies were assessed by
a computerized cross-validation study and were tested in real situations.
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1. Introduction

During surgery, the anesthesiologist controls
the depth of anesthesia by administrating three
types of drugs: hypnotics to cause and maintain
loss of consciousness, analgesics to inhibit pain,
and very often muscle relaxants to block mus-
cle reactions. In this paper, the drugs consid-
ered are propofol as hypnotic and remifentanil as
analgesic. Nowadays, anesthesiologists may take
advantage of devices which monitor unconscious-
ness in real-time in order to choose the appropri-
ate dose of hypnotics. Typically, such monitors
are connected via electrodes to the patient’s fore-
head and display a signal that has been derived
from the electro-encephalographic activity of the

patient. The value of the signal gives the anesthe-
siologist an indication of the level of unconscious-
ness of the patient. A commonly used monitor
is the bispectral index (BIS) commercialized by
Aspect Medical Systems [39]. The BIS monitor
provides a single dimensionless number, the BIS
value, which ranges from 0 to 100. A BIS value
of 0 equals EEG silence, while near 100 is the ex-
pected value for a fully awake adult, and between
40 and 60 indicates a level for general anesthe-
sia recommended by the manufacturer. Figure 1
shows a typical temporal pattern of the BIS sig-
nal during a surgical operation. The BIS signal
is close to 100 at the beginning of the operation
when the patient is still conscious and falls to
about 50 after the induction phase when the pa-
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Figure 1: An example of BIS signal evolution.

tient loses conscience. Then, it is typically con-
trolled around values in the 40-60 range until the
end of the operation when the anesthesiologists
stops the delivery of hypnotics and the patient
awakes. The BIS monitor allows the anesthesiol-
ogist to detect situations of excessively high or low
hypnosis and consequently to adapt the titration
of the agents in order to avoid unsafe states.

Note that remifentanil is often used together
with propofol because of its known impact on
the interaction between propofol and the BIS in-
dex [16].

Despite the real-time insight that BIS pro-
vides about the depth of anesthesia, it remains
difficult for the anesthesiologist, especially if in-
experienced, to predict how the BIS signal could
vary after a change in the administered anesthetic
agents. This is generally due to the high variabil-
ity of the reactions of the patients to drugs even
within classes of patients having similar physi-
ology, which is referred to in the literature as
the inter-individual variability problem [36]. This
means that, two patients treated with a similar
dose of drug at the same phase of the surgery
could manifest a very different BIS evolution, these
differences being impossible to explain solely by
age, sex, weight, or other apparent differences.

In this article we analyze a historical database
of surgeries in order to learn the short and medium
term influence of hypnotic drugs on the level of

consciousness of the patient. Specifically, this is
achieved by applying machine learning methods
to predict the bispectral index. Also, this article
introduces an original technique to deal with the
inter-individual variability.

Two learning techniques are considered: a lin-
ear predictive model [31] and a local learning pre-
dictive model based on the lazy learning algo-
rithm [7]. Because of the high number of descrip-
tive variables we take into account, the learning
procedure is preceded by a forward feature selec-
tion procedure to reduce the input dimensionality.

Two validation strategies are adopted to assess
the quality of the predictive models: (i) a simu-
lated cross-validation procedure which takes ad-
vantage of the large number of available historical
surgeries and (ii) a preliminary assessment of the
accuracy of the predictions returned by the pro-
totype software BisPrediction. The software was
run five times in the operating room under the su-
pervision of the anesthesiologists coauthoring this
paper and the results as well as a discussion on
their impact on the decision making process are
reported in Section 9.2.

The paper is organised as follows: The next
section presents a review of related studies. Sec-
tion 3 gives some information about surgical anes-
thetics concerning the learning problem studied
in this paper and is formally defined in Section 4.
This section also introduces the two learning tech-
niques used in this paper. Section 5 presents
the feature selection procedure adopted to im-
prove the prediction accuracy of the learning ma-
chines. For safety purposes, Section 6 proposes
a mechanism which detects the use of the model
in a region of the learning dataset where the den-
sity of the samples is too low. BisPrediction is
a software-tool which implements the predictive
model and is presented in Section 7. Section 8
presents the learning datasets used in Section 9
for the experiments. Section 10 gives the conclu-
sions of this paper.

2. Literature review

The link between drug administration and level
of conscience has often been studied from a con-
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trol theory perspective. Some authors [3, 2, 22,
29] propose proportional-integral-differential algo-
rithms for automatic control of BIS by propofol
anesthesia. Liu et al. [24, 25] compare a propor-
tional-differential controller to a manual TCI ad-
ministration.

While PID controllers require no a priori model
of the BIS behavior, model-based approaches [30,
42, 18] integrate patient models to predict the BIS
response to some drug input. Struys et al. [41]
propose a simulation methodology to test auto-
mated controllers and apply it to compare two
propofol controllers [42, 3] where BIS is the con-
trolled variable. De Smet et al. introduce a Baye-
sian closed-loop model which is first assessed in a
simulation setting [11] and then tested in a clinical
environment [12]. However, unlike the data driven
approach presented in this paper, the BIS pre-
diction models adopted in state-of-the-art model-
based controllers rely on conventional pharmaco-
kinetic-pharmacodynamic (PKPD) models whose
parameters are tuned to specific patients.

Machine learning approaches are however not
new in anesthesia. Greenhow et al. [14] use fuzzy
logic and Bayesian reasoning with about 400 rules
derived from expert anesthetists to provide deci-
sion support for dosing of inhaled volatile anes-
thetics. Nebot [32] extends this work by propos-
ing fuzzy inductive reasoning to control depth of
anesthesia as defined by the heart rate, the sys-
tolic arterial pressure and respiratory rate. Other
papers use neural networks to assess the depth of
anesthesia (using systolic arterial pressure, heart
rate and respiration rate as inputs) [43] and anal-
yse the resultant networks using principal com-
ponents analysis and canonical discriminant vari-
ates [23]. Some studies use fuzzy-logic and neural
networks to build a controller of depth of anes-
thesia based on the auditory evoked potentials
(an other monitor of depth of anesthesia) [17, 5].
Shieh et al. [38] help choosing the concentration
of inhaled volatile anesthetics using a hierarchi-
cal architecture and self-organizing fuzzy logic for
reasoning. The rules are given by expert anes-
thetists or derived from machine-learning tech-
niques. Some authors [34, 27] use fuzzy model-
ing to build a comprehensive patient model which

predicts the effects of the propofol and remifen-
tanil on the depth of anesthesia, but this depth
is measured from the heart rate, the systolic arte-
rial pressure and several auditory evoked potential
features rather than on the BIS as in our study.
Several surveys [21, 1, 26, 13, 35] cite other re-
lated studies using fuzzy logic theory, control and
expert systems.

Unlike the approach presented in this paper,
most of existing studies [3, 2, 22, 24, 25, 30, 42,
18, 41, 11, 12, 17, 32, 5, 38] either model the BIS
reactions to a single input (propofol or another
hypnotic drug) or rely on very little experimental
evidence. This is the case of of Nunes et al. [33]
who tune a Takagi-Sugeno-Kang fuzzy model to
predict the future BIS on only two patients.

3. The data collection system

This paper presents and assesses a BIS predic-
tive model whose learning was made possible by
the availability of a large database of historical
anesthesia sessions. The sessions were recorded
by the Infusion Toolbox (ITB) software [10]. This
software, implemented in C and Smalltalk1, has
been used for several years by the anesthesiolo-
gists of the Erasme Hospital, Brussels to achieve
Total IntraVenous Anesthesia (TIVA), which will
be discussed shortly in the following.

General anesthesia could be considered as hav-
ing three components [28]: amnesia, analgesia and
possibly muscle relaxation. Total intravenous anes-
thesia (TIVA) achieves these components by ad-
ministering a combination of exclusively intrave-
nous anesthetic drugs, by infusing them separately
and allowing titration of each to the specific dose
required to meet the specific needs of the case.

Understanding pharmacokinetics is capital to
perform TIVA. The most classical way to describe
the decline of blood concentrations after a bolus
dose or end of infusion is an open tricompartmen-
tal model [6] (see Figure 2).

After a bolus of an intravenous anesthetic drug,
there is a rapid, initial distribution phase which

1http://www.smalltalk.org/
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Figure 2: Compartment modeling seeks to estimate the
contraction evolution with time of a drug in an effect
site (e.g. the brain). The values of the transfer rates
(k10, k21, k12, k31, . . .) and volumes (V1, V2, V3) are defined
by the model.

represents distribution from central plasmatic com-
partment to highly perfused organs such as the
brain (also called effect site). This is followed by
a slower, second phase representing redistribution
to less well perfused tissues such as muscles and
fat (second and third compartment). Significant
metabolism occurs during the second phase. Re-
covery from anesthesia is due to extensive redistri-
bution from the brain and to metabolic clearance
(liver/renal/plasmatic).

This helps to calculate the ideal loading dose
and infusion rate to maintain a certain concen-
tration of a drug at an effect site. The best way
to achieve this goal is a computer controlled infu-
sion called TCI (Target Controlled Infusion) [15].
Instead of setting an infusion rate as a flow, the
anesthetist sets and adjusts the target brain con-
centration as required on clinical grounds. Then,
a microprocessor computes the flow of drug needed
to achieve and maintain the desired brain concen-
tration, according to a pharmacokinetic model,
using a microprocessor-controlled syringe pump.
Such models exist for propofol (hypnotic agent)
and remifentanil (analgesic agent).

The ITB software monitors the patient state
and acts as a servo-controller on the multiple in-
travenous drug infusions (Figure 3). Before and
during the operation, ITB stores statistics and
monitoring information like: (i) basic details re-
garding the doctor, the patient and his general

Patient

Monitoring

Surgeon

Target Delivery
rate

Not measured information

Other actions

Database Predictive
model

(e.g. BIS)

Anesthesiologist
ITB

Figure 3: The ITB software and the anesthesia procedure.
ITB accomplishes two main tasks: (i) servo-control of the
drugs’ delivery rate on the basis of the targets fixed by the
anesthetist and (ii) monitoring and storing the patient’s
signals and the anesthetist’s actions in a database.

state, (ii) the type of surgery, (iii) the evolution
of the hemodynamic and physiological parameters
(e.g. the BIS) of the patient, (iv) the evolution of
the concentration levels of the drugs as chosen by
the anesthetist.

Figure 4 shows an example of the evolution of
the BIS index during a short period of time of
14 minutes. In this example, the patient is a 70
year-old man of 76 kg, 174 cm and his lean body
mass (lbm) equals 59.18. We fix the zero reference
for time when the target of propofol is modified
for the first time. Note that at 443 seconds, the
anesthetist modifies the target of propofol from
0.5µg/ml to 2µg/ml. The propofol target’s mod-
ification is made 412 seconds since the previous
modification and the BIS drops, in general, as a
consequence in the subsequent minutes.

4. Learning of BIS predictive models

This section discusses the learning procedure
to estimate the BIS prediction model from data
collected by the ITB system. We intend to solve
the following: predict the short or medium term
(about 10 minutes) temporal evolution of the BIS
signal upon change of target of propofol by the
anesthesiologist.

We adopt a well known forecasting strategy
called direct prediction [40]. We wish to predict
the BIS signal at regular intervals of ∆ units of
time from the time t when the target of propofol
was changed. In doing so, the problem is decom-
posed into a set of distinct prediction tasks, one
for each horizon t+h, where h ∈ {∆, 2∆, . . . , H∆}.
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Figure 4: The evolution of the BIS index during a short
period of time. At time t = 443 seconds, the anesthetist
changes the setting of propofol from 0.5µ/ml to 2µ/ml.

Once these predictors are built, the set of predic-
tions for the intervals are assembled to obtain the
discrete-time values of the BIS signal in the inter-
val [t+ ∆, t+H∆].

In this work, we estimate a NARMAX (Non-
linear AutoRegressive Moving Average with eX-
ternal input) model fh for each prediction task
[37] according to

B (t+ h) = fh (B (t) , x (t)) + εh(t),

h = {∆, 2∆, . . . , H∆} (1)

where t denotes an instant of the operation at
which the propofol target is changed, t = 0 cor-
responds to the time of the first modification of
the propofol target, εh(t) is an error term of the
model, B(t) is the value of the BIS at time t and
x(t) is the value at time t of the vector x which
lumps the set of variables described in Table 1.
Note that in the setting of our problem, we gen-
erate a set of models by specifying H = 20 and
∆ = 30 seconds.

4.1. The set of variables

Table 1 reports for each input variable its no-
tation, definition, whether the variable is static
(i.e. constant during the operation), and whether
this variable is a session specific one. We mean
by initialization the phase when session specific

variables are introduced and recorded to help the
model deal with the issue of inter-individual vari-
ability. It is a 10 minutes period (including the
paptient induction) starting with the first mod-
ification of the propofol target. The variables
recorded during the initialization are essentially
related to the reaction of the patient to the sur-
gical and anesthetic stimuli of the early phases
of the operation. The rationale is that due to
inter-individual variability, the evolution of the
patient’s level of awareness during the early phases
of the operation can help the system to better un-
derstand the patient.

Let us now explain some of the input variables
of our model as given in Table 1. The variable p(t)
denotes the target of propofol (µg/ml) before the
modification at time t while ∆p(t) denotes the
target modification. In other words, the new tar-
get of propofol after the modification amounts to
p(t) + ∆p(t). The variable r(t) measures the tar-
get concentration of remifentanil (ng/ml) when
the target of propofol is modified (i.e. time t)
while Tr is the time elapsed since the last modifi-
cation of the remifentanil. The fifteen remaining
variables are static variables. Among them the
first five are conventional descriptive variables of
the patient profile. The latter ten variables are
session-specific and are recorded during the ini-
tialization phase. The quantities p80, p70 and p60
denote the target concentration of propofol dur-
ing the initialization phase when the BIS equals
80, 70, and 60, respectively. The variables µr
and µp contain the value of the average target of
remifentanil and propofol during the first 10 min-
utes. The quantity maxp is the maximum target
of propofol used by the doctor during the initial-
ization phase and tMaxp is the instant at which
the target of propofol reaches its maximum value
maxp. minB is the minimum reached by the BIS
and tMinB is the instant at which the BIS attains
its minimum value minB. Finally, R is the ratio
between maxp and minB. A large R means that
the induction was aggressive i.e. the maximum
target of propofol is high and the BIS decreases
to a small value.

5



Variable Signification Static
Session
specific

∆p(t) The modification’s magnitude
of the propofol target concen-
tration (µg/ml) at time t.

p(t) The target concentration of
propofol before the target
modification.

∆timeP The time (sec) elapsed between
the last modification of the tar-
get concentration of propofol
and t.

t The instant (sec) when the tar-
get concentration of propofol is
modified.

r(t) The target concentration of
remifentanil (ng/ml) at time t.

Tr(t) The time (sec) elapsed between
the last modification of the tar-
get concentration of remifen-
tanil and t.

a The age of the patient. X
s The sex of the patient. X
he The height of the patient (cm). X
w The weight of the patient (kg). X
lbm The Lean Body Mass

(lbm) of the patient equals

[
1.1 · weight− 128weight2

height2

if sex = man[
1.07 · weight− 148weight2

height2

if sex = woman

X

p80 The target of propofol (µg/ml)
when the BIS equals 80.

X X

p70 The target of propofol (µg/ml)
when the BIS equals 70.

X X

p60 The target of propofol (µg/ml)
when the BIS equals 60.

X X

µr The average target concentra-
tion of remifentanil (ng/ml).

X X

µp The average target concentra-
tion of propofol (µg/ml).

X X

maxp The maximum reached by the
target of propofol (µg/ml).

X X

tMaxp The instant (sec) when maxp
is reached.

X X

minB The minimum reached by the
BIS.

X X

tMinB The instant (sec) when minB

is reached.
X X

R The ratio between maxp and
minB .

X X

Table 1: This table describes the variables of the vector
x (t) in equation (1).

4.2. The learning procedure

Two learning techniques are used to imple-
ment the set of prediction models according to
(1). The first one is a conventional linear tech-
nique [31]. The second is a local modeling tech-
nique, called lazy learning [7], which has been
proved to be successful in many problems of non-
linear modeling [9] and in two international com-
petitions on data analysis and time series predic-
tion [8].

In local modeling, the value of an unknown
mapping is estimated focusing on the region sur-
rounding the point where the estimation is re-
quired. The procedure essentially consists of these
steps: (i) for each query point q(t), select a set
of neighbors and weigh their relevance according
to some relevance criterion (e.g., the distance) (ii)
choose a local regression function h in a restricted
family of parametric functions (iii) compute the
regression value h(q). Doing so, the approach re-
quires to keep in the memory the set of observa-
tions for each prediction, unlike a global model-
ing approach (e.g., linear regression) which dis-
cards it. At the same time, local modeling re-
quires only simple approximators (e.g., constant
and/or linear) to model the dataset in a neighbor-
hood of the query point. Moreover, the method
is intrinsically adaptive, since the availability of
new measurements simply requires the updating
of the observations’ set.

Lazy learning is a particular instance of lo-
cal modeling which provides an automatic way
of selecting the optimal number of neighbors for
each query point. The idea consists in starting
from a minimum number of neighbors and recur-
sively adding neighbors until the predicted perfor-
mance of the corresponding local approximation
significantly decays or until a maximum number
of examples is reached. This procedure allows the
detection of a linearity region around the query
point. For more details on local modeling meth-
ods and the distinctive features of lazy learning,
we refer the reader to [7].
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5. Feature selection

Techniques which estimate non-linear depen-
dencies from multidimensional data are vulner-
able to ill-conditioning and overfitting. Having
recourse to feature selection techniques is a typi-
cal solution to such situations which at the same
time provides an useful insight to the anesthetist
about which variables play an important role on
the evolution of the patient physiology.

Examples of feature selection approaches are
filtering [20] and wrapper techniques [19]. In this
paper, we use a well-known wrapper technique
called sequential forward selection [4] where a leave-
one-out cross-validation procedure is used to as-
sess the robustness of the input feature set.

The sequential forward selection begins by con-
sidering each of the variables individually and by
selecting the most accurate. At each successive
stage of the algorithm, one additional input vari-
able is added to the set, again chosen on the basis
of the best accuracy.

Table 2 gives the input variables selected by
the sequential forward selection algorithm for each
prediction problem. Note that some variables are
selected more often than others and are conse-
quently expected to bring higher information on
the evolution of the BIS index. For instance,
the variables B(t), ∆p(t) and p(t) are always se-
lected. Except for the predictive model fh=540,
the variable minB is also always present. The
variables p70, R, ∆timeP , and t are also selected
frequently. We decided to take these eight input
variables as the most informative and we included
them in the final predictive models

B̂(t+ h) = f̂h(B(t),∆p(t), p(t),minB,

p70, R,∆timeP, t, αN). (2)

where αN is a vector containing the parameters
of the model.

To predict the BIS, the forward selection pro-
cedure confirms the importance of taking into ac-
count the current BIS index, the magnitude of
the drug modification and the old target of propo-
fol. Most of the static variables (age, sex, lbm,
etc.) are already integrated in the pharmacoki-
netic model and this could explain why these vari-

h Variables selected by the sequential forward selection
algorithm

30sec B(t) + ∆p(t) + p(t) + minB + r(t) + p70 + ∆timeP
+ R + w + tMinB + p60 + he + lbm

60sec B(t) + ∆p(t) + p(t) + minB + p70 + p80 + ∆timeP
+ t + r(t)

90sec B(t) + ∆p(t) + p(t) + minB + t + ∆timeP + w +
p70 + R

120sec B(t) + ∆p(t) + p(t) + minB + p70 + ∆timeP + t
+ R + maxprop

150sec B(t) + ∆p(t) + p(t) + minB + tMinB + p70 + R +
t + ∆timeP + he

180sec B(t) + ∆p(t) + p(t) + minB + µr + ∆timeP +
tMinB + p70 + R + p80 + lbm + age

210sec B(t) + ∆p(t) + p(t) + minB + µp + R + t + ∆timeP
+ r(t) + he + maxprop + p60

240sec B(t) + ∆p(t) + p(t) + minB + p70 + R + t +
∆timeP

270sec B(t) + ∆p(t) + p(t) + minB + p70 + R + he + t +
∆timeP + r(t)

300sec B(t) + ∆p(t) + p(t) + minB + p70 + p80 + ∆timeP
+ tMaxprop + t + R + maxprop

330sec B(t) + ∆p(t) + p(t) + minB + p70 + p80 + µr +
∆timeP + t + r(t) + R + maxprop + p60

360sec B(t) + ∆p(t) + p(t) + minB + p70 + R + maxprop
+ t + r(t) + ∆timeP + µr

390sec B(t) + ∆p(t) + p(t) + minB + r(t) + p70 + R + p80
420sec B(t) + ∆p(t) + p(t) + minB + p70 + p80 + µr
450sec B(t) + ∆p(t) + p(t) + minB + maxprop + p80 + R

+ µr + p70
480sec B(t) + ∆p(t) + p(t) + minB + p60 + R + t +

∆timeP + µr + p80 + maxprop
510sec B(t) + ∆p(t) + p(t) + t + minB + p70 + R +

maxprop + ∆timeP + µr + p80
540sec B(t) + ∆p(t) + p(t) + t + p70 + R + p60 + p80 +

µr
570sec B(t) + ∆p(t) + p(t) + p70 + p80 + minB + µp + t

+ R + ∆timeP + w + p60 + µr + age
600sec B(t) + ∆p(t) + p(t) + p70 + p80 + minB + t +

∆timeP + µp + sexe + age + R + p60 + µr

Table 2: For each learning set, this table gives the input
variables selected by the sequential forward selection algo-
rithm.
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ables are rejected by the forward selection. Note
that input variables minB, p70, and R selected by
the feature selection algorithm and are specific to
the patient and measures the patient’s reaction as
they are recorded during the first ten minutes of
the intervention. We expect that this subset of
variables carries within the model sufficient infor-
mation to reduce the inter-individual variability
problem.

6. Domain of clinical validity

An important issue in using prediction mod-
els for safety-critical applications is to determine
whether they are used in their validity domain in
a clinical setting. Since our final goal is to use the
BIS prediction models to support decision mak-
ing during surgery, we need the definition of a
mechanism which detects when the tool is used
outside its validity region. For that reason, we
implemented an outlier detection algorithm which
relies on a multivariate estimator of the density of
the inputs. A warning message is then issued to
the user when the model is asked to operate in a
point where the density of the historical dataset is
too low. This density is estimated based on B(t),
∆p(t) and p(t), which were consistently selected
by the feature selection procedure described in
Section 5.

We adopted a parametric outlier detection pro-
cedure which relies on a conventional multivari-
ate Gaussian estimation and the Mahalanobis dis-
tance. Let µ̂ =

[
µ̂B(t), µ̂∆p(t), µ̂p(t)

]
be the sample

mean vector computed with the training set and
Σ̂ the sample covariance matrix.

LetXq =
[
qB(t), q∆p(t), qp(t)

]
be the query point,

that is the vector containing the BIS index, the
drug’s modification and the old propofol target at
time t.

The Mahalanobis distance

dM =

√
(Xq − µ̂)T Σ̂−1 (Xq − µ̂).

can be used to detect whether the query is an out-
lier or equivalently whether the model is requested
to work in an unsafe region.

In our application, the anesthetist is warned
that the model is running out of its validity re-
gion when the Mahalanobis distance dM is higher
than the 90% quantile of the Mahalanobis dis-
tance computed on the samples of the training
set.

7. The BisPrediction tool

One of the contributions of this paper is the
implementation of a decision support software tool
called BisPrediction. It implements H = 20 linear
predictive models f̂h. The estimated coefficients
of these models are reported in Appendix A. Bis-
Prediction interacts with ITB to obtain the input
variables each time the anesthesiologist intends to
perform a propofol target variation.

Figures 5 and 6 contain screenshots of BisPre-
diction in manual and automatic modes. The first
two panels from the left are the usual ITB panels.
The first panel is used by the anesthetist to con-
trol the propofol and the second one is dedicated
to remifentanil, while the third panel is BisPre-
diction.

BisPrediction receives all the information re-
garding the current session by communicating with
ITB via a server which is running in the back-
ground. This communication is completely trans-
parent to the anesthetist and allows to have a very
simple Graphical User Interface (GUI) which min-
imizes the interaction between BisPrediction and
the user.

The two tabs of the BisPrediction interface are
used to choose its two main working modes: the
manual mode (Figure 5) and the automatic mode
(Figure 6). There is a third tab which displays
all the internal variables used by the models for
debugging purposes.

In the manual mode, the anesthetist chooses
the target of propofol, clicks on GO and a graphic
with the estimation of the BIS index is displayed.
This allows the anesthetist to estimate the effect
of a drug modification before it is applied.

In the automatic mode, no interaction is re-
quired via the GUI. Here, whenever the level of
concentration of propofol is modified on ITB (the
first panel starting from the left in Figure 6), a sig-
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Figure 5: A screenshots of ITB and BisPrediction (manual mode)

Figure 6: A screenshots of ITB and BisPrediction (automatic mode)

nal requesting a plot of the estimated future BIS
index is automatically sent from ITB to BisPre-
diction, via the server running in the background.

BisPrediction is implemented with the Java /
Swing2 language and the JFreeChart3 library is
used to display the curves of the BIS evolution
and Java Native Interface technology is used to
interact with the server.

8. The learning set

By means of the ITB software, we collected a
huge MySQL4 database containing the recordings
of 1069 interventions.

2http://java.sun.com/
3http://www.jfree.org/jfreechart/
4http://www.mysql.com/

In order to learn the predictive model fh, the
database is used to create 20 learning sets Dh

N ,
h = {30, 60, 90, 120, . . . , 570, 600}. Note that a
sample belongs to the dataset Dh

N if the target
concentration of propofol is modified at time t
(with t > 600 sec, i.e. after the initialization
phase) and if no other modifications of the target
of propofol appears in the time interval [t, t+ h].
Table 3 gives the number of samples for each learn-
ing set thus obtained.

We used the statistical language R5 for the
statistical analysis and the package RODBC6 for
connecting R with the MySQL database.

5http://www.r-project.org/
6http://cran.r-project.org/web/packages/RODBC
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Dh=30
N Dh=60

N Dh=90
N Dh=120

N Dh=150
N

N = 1786 1656 1542 1465 1390

Dh=180
N Dh=210

N Dh=240
N Dh=270

N Dh=300
N

N = 1333 1270 1244 1195 1148

Dh=330
N Dh=360

N Dh=390
N Dh=420

N Dh=450
N

N = 1101 1060 1017 986 957

Dh=480
N Dh=510

N Dh=540
N Dh=570

N Dh=600
N

N = 917 890 860 824 801

Table 3: This table shows for each of the twenty learning
sets, the number of samples available.

9. Experiments and results

9.1. Assessment using cross validation

The validation of the models is an important
aspect in machine learning. Three different cross-
validation criteria are used for the validation and
two of them rely on the notion of leave-one-session-
out error. Let S(i) be the set of all the samples
belonging to the session from which the sample i
originates. Let B̂(−S(i))(t+h) be the prediction for
the sample i returned by a model trained on all
the samples except the ones in the set S(i). The
leave-one-session-out error made on the sample i
is then given by

Êloo
i (h) = B̂(−S(i))(t+ h)−Bi(t+ h).

The first criterion which is used to assess the
quality of the prediction is the normalized mean
squared error (NMSE)

NMSE =

∑N
i=1

(
Êloo
i (h)

)2

∑N
i=1 (µ̂b −Bi(t+ h))2

where µ̂b = 1
N

∑N
i=1 Bi(t+h) is the average of the

future BIS index. The NMSE measure is com-
monly used in the time series prediction commu-
nity to assess how the predictor behaves with re-
spect to the simplest one (i.e. the sample aver-
age). Note that if NMSE > 1, we may interpret
that the prediction error is worse than the error
obtained had the average of the future BIS been
used.

The second criterion is the mean of the abso-
lute errors (MAE)

MAE =
1

N

N∑
i=1

∣∣∣Êloo
i (h)

∣∣∣ .

Figure 7: NMSE (normalized mean squared error) of the
H = 20 predictive models (the lower the better).

This measure has the same dimension as the BIS
index variable and gives an indication about the
average magnitude of the errors made by the de-
cision support system.

The last criterion is the percentage P of cases
where the change of the predicted future BIS has
the same direction as the real future BIS

P =
100

N

N∑
i=1

I
[(
B̂(−S(i))(t+ h)−Bi(t)

)
·

(Bi(t+ h)−Bi(t))]

where I [A] =

{
1 if A ≥ 0,

0 if A < 0.
.

This criterion measures how often the changes of
BIS predicted by the decision support tool agree
with the real ones.

Figures 7, 8 and 9 shows the cross-validated
values of NMSE, MAE and P for the 20 predic-
tion models. The results show that, in most of the
cases, lazy learning outperforms the linear model
and supports the argument that a non-linear re-
lationship probably holds between the target of
propofol and the BIS index. Table 4 gives the
p-values (paired t-test) of the normalized mean
squared error in comparing the lazy learning model
with the linear model. Although the lazy learn-
ing is always better than linear model in having
a lower NMSE, according to Table 4, this differ-
ence in performance is significant for h ≤ 120 and
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Figure 8: MAE (mean of the absolute errors) of the H =
20 predictive models (the lower the better).

Figure 9: Evolution of the P for the twenty models (the
higher the better).

Figure 10: An exemple of an equipment cart used at the
Erasme Hospital.

h ≥ 450. We are yet to incorporate the lazy learn-
ing in BisPrediction.

9.2. Validation in real settings

The ITB and BisPrediction softwares were in-
stalled in an equipment cart of an operation room
at the Erasme Hospital to carry out preliminary
validation. This equipment cart (Figure 10) holds
three syringe pumps of hypnotic, analgesic and
muscle relaxant drugs together with a BIS moni-
tor.

The BisPrediction functionality, in terms of
10 minutes ahead predictive information provided
to the anesthesiologist, was assessed during five
surgical operations.

For one of these operations (29 year-old woman
undergoing a gynaecological surgery), Figure 11
shows the real BIS evolution together with the
predictive output of BisPrediction after each propo-
fol target modification (vertical lines). The light
grey area represents the initialization phase while
shaded areas represent intervals of confidence. Black
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Models f̂30 f̂60 f̂90 f̂120 f̂150 f̂180 f̂210 f̂240 f̂270 f̂300

p-value <0.01 <0.01 <0.01 <0.01 0.047 0.52 0.51 0.79 0.051 0.012

Models f̂330 f̂360 f̂390 f̂420 f̂450 f̂480 f̂510 f̂540 f̂570 f̂600

p-value 0.061 0.29 0.0172 0.049 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Table 4: The p-values (paired t-test) of the NMSE (normalized mean squared error).
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Figure 11: The Bis evolution during surgery. Vertical red
lines are propofol target modifications. Black area repre-
sents prediction of Bis during ten minutes after propofol
modifications. Grey area occurs when the Mahalanobis
distance is too high.

shaded areas characterize predictions made for
regimes inside the validity region (Section 6) while
grey regions denote predictions made in a config-
uration out of the validity region. For instance,
because of a very low BIS (under 30), the first
prediction happens to be outside the validity of
our model defined by the Mahalanobis distance.
Note also that the strong BIS increase (marked
by the A character in Figure 11) is due to cough-
ing of the patient. Because of the fortuity of this
event, our model was enable to return a reliable
prediction.

However, the majority of the predictions per-
formed during the five surgical case studies were
deemed to be sufficiently close to the real BIS. As
a consequence, the overall evaluation of the per-
formance was positive and the tool was judged
as promising by our partner anesthesiologists to
provide useful information during the surgery.

Useful suggestions were also made for future

works mainly related to the improvement of the
performance around the final phases of the surgery.
In machine learning terms this request can be eas-
ily adressed by building a specific database to deal
with the end of the operation and the awakening
phase.

10. Conclusions and Future Work

This paper proposes the use of machine learn-
ing techniques to build a predictive model sup-
porting the activities of anesthetists during sur-
gical operations via a decision support tool. The
cross-validation results (Section 9.1) as well as the
preliminary tests in real conditions (Section 9.2)
are encouraging. It is our belief that such a tool
can reduce risks in daily medical practice by help-
ing the anesthesiologist to chose the best hypnotic
dose in advance. The performances of the predic-
tive models as well as its successful implementa-
tion and use in real operations as detailed in this
article are strong indications that this area of re-
search is worth exploring in more detail.

We propose the following ways to extend this
work. Three of the eight features selected by the
feature selection procedure are created during the
initialization phase (minB, p70 and R). This is
an argument in favor of the use of this kind of
features to deal with the inter-individual variabil-
ity problem. To improve the prediction accuracy
of the model, research must be extended in this
direction to explore new features created during
the initialization phase.

Currently, BisPrediction was assessed in only
five experimental conditions. In order to analyze
the impact on the daily practice of this kind of
decision support system in anesthesia, a protocol
should be defined to test BisPrediction on a larger
number of real cases.

Finally, the whole work is focused on the im-
pact of Propofol on the BIS. The same method
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presented in this paper could be generalized to
the prediction of other clinical variables (for in-
stance blood pressure and heart rate).

A. The coefficients of the linear models

This appendix gives the linear version of the
twenty predictive models f̂h implemented is the
BisPrediction software. The linear predictive mod-
els are defined as

f̂h =a1 ·B(t) + a2 ·∆p(t) + a3 · p(t)+
a4 ·minB + a5 · p70 + a6 ·R+

a7 ·∆timeP + a8 · t+ a0 (3)

where the values of the coefficients a, depending
on h, are described is Table 5.
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