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Abstract We propose a way to infer distributions of any performance indicator
computed from the confusion matrix. This allows us to evaluate the variability of
an indicator and to assess the importance of an observed difference between two
performance indicators. We will assume that the values in a confusion matrix are
observations coming from a multinomial distribution. Our method is based on a
Bayesian approach in which the unknown parameters of the multinomial proba-
bility function themselves are assumed to be generated from a random vector. We
will show that these unknown parameters follow a Dirichlet distribution. Thanks
to the Bayesian approach, we also benefit from an elegant way of injecting prior
knowledge into the distributions. Experiments are done on real and synthetic data
sets and assess our method’s ability to construct accurate distributions.
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1 Introduction

The confusion matrix [1,9] is typically used in machine learning to evaluate or
to visualize the behavior of models in supervised classification contexts [7]. It is a
square matrix in which the rows represent the actual class of the instances and the
columns their predicted class. If we are handling a binary classification task, then
the confusion matrix is a 2 X 2 matrix that reports the number of true positives
(#T'P), true negatives (#TN), false positives (#F P), and false negatives (#F N)

as follows :
#TP #FN 1
#FP #TN |~ (1)
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This matrix contains all the raw information about the predictions done by a
classification model on a given data set. To evaluate the generalization accuracy
of a model, it is common to use a testing data set which was not used during
the learning process of said model. Many synthetic one-dimensional performance
indicators can be extracted from a confusion matrix. The performance indicator
can be, for example, the precision, the recall, the F-score ... When different kinds
of errors are not assumed to be equal, in association with a 2 x 2 cost matrix,
cost-sensitive performance indicators [3] can also be computed from the confusion
matrix. The choice of the suitable performance indicator is directly linked to the
objective of the learning problem.

Let us assume that we have two models and we want to select the best one
according to a given indicator. Performance indicators are scalar numbers com-
puted from the confusion matrix. Assume that the F-scores of the two models are
respectively 0.6 and 0.65. Classical methods give no information about the confi-
dence we can have about these values. As performance indicators are intrinsically
generated by a random process, we can’t be sure that the model with the highest
indicator (i.e. 0.65) is really the best one. We would like to find a way to quantify
this uncertainty. One of the known techniques to estimate the variability of an
indicator is the bootstrap method [2].

Note that we are not trying to estimate the generalization accuracy of a whole
learning machine algorithm *. Instead, we study the generalization accuracy of a
given model. In this paper, we assume that we don’t have access to the training
set or to the testing set. We only have access to the confusion matrix and, on
this basis, we try to deduce some properties of the underlying distribution of the
model’s performance indicators.

In this paper, we propose to use Bayesian techniques [5] on the confusion ma-
trix. For this, we will assume that the values in the confusion matrix are coming
from a multinomial distribution [4]. In this parametric context, Bayesian tech-
niques allow us to take into account the intrinsic variability of the unknown pa-
rameters of the multinomial distribution. The variability of these parameters will
be measured by a probability function, and we will see that this function can be
modelized by a Dirichlet distribution [4]. This Dirichlet distribution can be used
in the multinomial distribution to obtain information about the distribution of
the values in the confusion matrix. As the performance indicators come from the
confusion matrix, it gives us information about the indicators’ distribution. This
makes it possible to compute metrics about the uncertainty that concerns any
performance indicator. The use of a Bayesian framework also allows us to inject a
priori knowledge in the confusion matrix. We will see that injecting prior knowl-
edge can have a positive impact on the a posteriori distribution associated to an
indicator, which is especially true when the number of measures in the confusion
matrix is low.

To the best of the author’s knowledge, [6] is the only paper which proposes to
use Bayesian methods to assess the confidence of indicators computed from the
confusion matrix. However, in [6], the framework may not be applicable to arbi-
trary performance measures. In our paper, we extend the work by using Dirichlet
distributions, which gives us a way to generalize the method for any performance
indicator extracted from a confusion matrix. We study the impact on the a pos-

1 As is generally sought with cross-validation methods.
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teriori distribution when a priori knowledge is injected, and we also compare our
method with the bootstrap techniques.

This paper is structured as follows : The learning problem is first formalized in
section 2. We start section 3 by assuming that the data in the confusion matrix are
generated from a multinomial distribution, and we end this section by showing how
to compute the a posterior: distribution of any performance indicator generated
from this confusion matrix. We illustrate our method on a simple synthetic example
in section 4. By using Bayesian techniques, we have the possibility of injecting prior
knowledge in the confusion matrix. This is the topic of section 5. In section 6, the
bootstrap method is theoretically compared to our method based on Bayesian
techniques. Section 7 contains experimental results on real and synthetic data
sets. We end by the conclusions in section 8.

2 Formalization of the learning problem

Let D = {(XZ,Y,)}fV:D1 be a learning data set with Np independent samples. We
assume that all the samples follow the same unknown joint distribution (X;,Y;) ~
F(X,Y) where X € X C RYandY €Y = {90,91,92,...,9y|-1}. It is common
to call X the input and Y the output. As the support of Y contains nominal values,
we are in a classification learning problem. For simplicity’s sake, we will assume
that we are in a binary classification task (|| = 2). This means that the set )
only contains the two following elements {0, ¥1}. As we will see, the results can
easily be generalized for multiclass tasks.

Following the standard machine learning setup [7], the goal is to use D to learn
a classifier model h : X — ). For a new input point z € X, the classifier returns
a prediction § = h(z) € Y. If we associate the value 0 to ¥9 and the value 1 to
91, then this definition includes the case § = h(z) = I (g(x) > ) € {0,1} where I
is the indicator function, g : X — [0,1] C R is a model which outputs real values
and v € [0,1] is a threshold. In this setting, g is a model that returns a confidence
score for x to be in class 1. A threshold ~ is used to decide whether x belongs to
class 1 or 0.

Let T = {(XZ,K)}f\;Tl be a testing data set with N7 independent samples
following the same unknown distribution F(X,Y"). In order to quantify the quality
of the predictions made by h on the samples in 7, we define the following loss
function A : Y x Y — {TP,TN,FP,FN}. Let y € {¥0,9:1} be the true class
and § € {¥o,01} the prediction. By convention, we define the mapping of the A
function as follows :

— if y =91 and § = 91, then A(y,g) = TP
— if y = 9o and § = 9o, then A(y,g) = TN
— if y =90 and § = 91, then A(y,y) = FP
— if y = ¢1 and § = Jo, then A(y,4) = FN

To simplify the notation, let A; = A(ys,9:). The vector M = (Aq,...,An,)
contains the values of the loss function computed on the testing set. We count
in the vector V = (#TP, #TN,#FP, #FN) € N* the number of times we
obtain from A a TP, a TN, a FP or a FN where #TP = ) . I(A; = TP),
#TN =3, I(A; =TP), ... Note that by definition, the sum of the elements in V
equals N.
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Given a classifier A and its results on 7, the vector V contains all the raw
information about the classifier’s predictions on the testing set. As in equation (1),
it is common to present this vector in a 2 x 2 matrix form. In this case, it is called
the confusion matriz.

A one-dimensional performance indicator Z : N* — R is a function that maps a
vector V into a score used to assess a classifier’s prediction performance. Many one-
dimensional performance indicators can be computed from V. Common indicators
are for example :

_ _ #TP+#TN
accuracy = grp 1 A FPI#FNT#TN
. . o TP
— precision — W
_ _ #TP
recall = FTPTEFN
_ _ 2 precision-recall . +
FQ—SCOI‘G - (1 + ﬁ )Bz-precision+recall ’ where B €eR
— G-score = y/precision - recall
— MCC = #TP-#TN—#FP-#FN

V#HTP+#FP)(#TP+#FN)(#TN+#FP)(#TN+#FN)

The performance indicator function Z can be used to compare different classifiers.
We usually take the model with the best performance.

3 A posteriori probability distribution of a performance indicator

The testing set 7 contains Ny independent and identically distributed random
samples. As the classifier h is tested on T, the scalar Z(V) is itself a random
variable from which we want to deduce some properties of the underlying distri-
bution. To do that, we propose to adopt a Bayesian framework on the confusion
matrix V. We will first consider that the values in the confusion matrix are coming
from a multinomial distribution with unknown parameters. The use of a Bayesian
framework gives us the opportunity to assume that the unknown parameters are
generated from a Dirichlet distribution. We can add a priori knowledge in the
Dirichlet probability function to determine an a posteriori probability distribu-
tion of the unknown parameters. This distribution can then be used to compute
an a posteriori of the one-dimensional performance indicators acquired from the
confusion matrix.

The output of the loss function A can be seen as the result of a random
experiment with {T'P,TN,FP,FN} as support set. It is a generalization of a
Bernoulli trial in which, rather than only two outputs for each trial, we have four.
As the data in T are independent and identically distributed random variables, we
know that the N7 outputs of A are also independent and identically distributed.
After a series of Ny independent random trials, the vector V can be interpreted
as a random vector where the elements #7'P, #T' N, #F P and #F N contain the
number of times that we observe TP, TN, FP and F N, respectively. The binomial
distribution is the discrete probability distribution of the number of successes
in a sequence of independent Bernoulli trials. The multinomial distribution is a
generalization of a binomial distribution when there are more than two possible
outputs at each trial. As the vector V counts the number of times that we observe
TP, TN, FP and F N, the vector V follows a multinomial distribution where there
are four possible outputs at each of the Ny independent trials.
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In this context, the vector V follows a multinomial distribution
VY ~ Mult(N, 0)
with the following probability mass function :

4

Nyl

P(V:v):’ullww9;);9;];9;;0;;I<ZUZ:NT> (2)
i=1

where 0 = (0ip,0tn,0fp,0fn) € Sp C R* are the unknown parameters of the
multinomial distribution and v = (v1,v2,v3,v4) is a realization of V with four
numbers in N. The set Sy is called the probability simplex and contains all the
possible values of 6 :

So={0|0:p >0,0tn > 0,05, >0,07, >0
and Otp + O¢n +9fp +9fn = 1}.

In equation (2), it is assumed that 6 is a vector with four fized unknown
parameters. Adopting a Bayesian point of view, we can consider that 0 is a real-
ization of an unknown random variable ©. In this Bayesian setting, the left part
of equation (2) becomes P(V = v|© = 0).

The Bayes rule and the law of total probability tell us that
PV =0 =0)- fo(0)

PV =v)
PV =v©=0)- fo(

~ Js, POV=116=10)- fo(0) - db (3)

fopv(0lv)

~

where foy(0|v) is the conditional density function of ©, given a confusion matrix
V.

Note that in equation (3), the denominator is there to ensure that ng fov(8lv)df =
1. Consequently, we only have to evaluate the numerator and to normalize the re-
sults so that the integral at the end equals 1. In this setting, equation (3) becomes

fory(Olv) oc P(V =0|0 =10)- fo(0) . (4)
—_— T/ =
A posteriori Likelihood A priori

Thanks to the Bayes rule, which allows us to interpret the parameter vector
6 as a realization of a random variable, equation (4) gives the conditional density
function of this variable ©. This conditional density is proportional to the product
of two terms. The likelihood returns a plausibility score that the values in the
confusion matrix are generated from a multinomial distribution with parameters
0. The second term is the a priori distribution and, as we will see, it allows us
to inject prior knowledge about the accuracy of the classifier model h. The a
posteriori probability fey(0|v) is a compromise between the a priori and the
likelihood.

The Dirichlet distribution is the conjugate distribution of the multinomial dis-
tribution [5]. It ensures that if the likelihood follows a multinomial function and
the a priori follows a Dirichlet function, then the a posteriori will also follow a
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Dirichlet function. The Dirichlet distribution is commonly used in Bayesian statis-
tics to model the parameters of a multinomial distribution. In this context, we say
that the vector @ follows a Dirichlet distribution

O ~ Dir(a) = Dir((a1, a2, a3, as))
with the following density function :

r (Zz O‘i)

Fol6) = T Frray OO0 0T L0 € )
o Ot 0p T 05T 03T 1 (0 € Sp) (5)

where the variables a; € Rsr are the parameters of the Dirichlet distribution
and where I'(-) is the gamma function. The first term I" (3", o) /[], I () in
the previous equation can be omitted because it is only there to ensure that the
integral of fo(f) on Sy equals 1.

The equation (5) defines the a priori distribution of the parameters in 6, and
these parameters are used in equation (2) to define the probability distribution of
the values in the confusion matrix. Prior knowledge can be injected in the a priori
distribution via o = (a1, a2, s, aa). This topic will be covered in section 5.

If in equation (4), the likelihood and the a priori are respectively replaced by
equations (2) and (5), we have

Jop(0lv) oc 07T - gt g T g (0 € Sp).

This is the a posteriori probability density function of the unknown parameters.
We can identify that, given the confusion matrix v and the prior «, this a posteriori
density function of @ follows a Dirichlet distribution

Olw ~ Dir((v1 + a1, v2 + a2, v3 + a3, v4 + aa)) = Dir(w) (6)

where w = (w1, w2,ws,ws) = (v1 + a1, v2 + @2, v3 + g, v4 + aq) are the parameters
of the a posteriori density function.

In (6), we have an analytical definition of the a posteriori distribution of the
unknown parameters. In the following, we will see how we can use this definition
to compute the a posteriori distribution of V), given the observed confusion matrix
v and the prior knowledge . Let ¥ be an arbitrary new confusion matrix. Before
the data in v are considered, the probability to observe this unknown matrix o is

P(V:@):/S POV =50 = 8) fo(8) db = By, [P(V = 50)].

It is often called the a priori predictive distribution. After the matrix v has been
observed, we can compute an a posteriori predictive distribution by replacing fe(0)
with the a posteriori distribution fo|y(0|v) as follows :

PV =10y = /s PV =190 =10) foyv(0lv) dd = Ey,, [P(V =93|O)]. (7)
6

The distribution of V|v synthesizes all the relevant information we can have about

the confusion matrix. It shows that the a posteriori predictive function is the

expectation of the conditional probability P(V = ©|@ = ) over the a posteriori
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distribution of ©. In (7), P(V = 0|© = 0) is obtained by the multinomial model
for a given value of the parameters and fo (0|v) is the a posteriori distribution
of said parameters.

A performance indicator Z is a function that maps the values of a confusion
matrix into real number space. Let G = Z(V|v) be a random variable associated
with the values taken by the performance indicator function. The density function
of G can theoretically be computed by a reparameterization [10] of the probability
function in equation (7). But most of the time, the analytical calculation of the
distribution of G may be very complex, or even impossible. Instead, we propose
to estimate this distribution by the following Monte Carlo simulation process,
described in algorithm 1.

Algorithm 1 Generating random samples from G by Monte Carlo
1: function MC-SAMPLER(Z, a, v, M)
for m <~ 1 to M do
Sample Op, from fgy (0|w) > See equation (6)
Sample ¥y, from P(V = 9|0 = 6.,) > See equation (2)
gm < L(0m,)
end for

return g = (g1,...,9Mm)
end function

Input in this algorithm are : (i) a performance indicator function Z, (ii) a
vector a with prior knowledge, (iii) a vector v with the values of the observed
confusion matrix and (iv) the number M of samples we want to generate. The
main loop appears between lines 2 and 6. In line 3, a sample 6,, is generated from
a Dirichlet ? distribution where w is a vector containing the sum of the vectors «
and v. This sample 6,, is used in line 4 to extract a sample Uy, from a multinomial
distribution. In line 5, ¥y, is injected in the performance indicator function Z to
compute gn,. Note that if a correlation study must be done between the indicators,
it should be at this line that the other performance indicators are computed on
the same ¥,,. In section 4, we will use this technique to evaluate the correlation
between the precision and recall on a synthetic example. At line 7, the algorithm
returns a vector with M samples from G. These M samples can then be used to
estimate any statistics about the distribution of the indicator, such as the mean,
variance, skewness, quantiles...

Note that to generate the M samples from the random variable associated
with the performance indicator G, we don’t need to know the learning set D or
the testing set 7. Since the total number of samples has to be known in order to
obtain a multinomial distribution, we only need one observed realization v of the
random vector V associated to the confusion matrix.

2 To generate random samples from a Dirichlet distribution, we can use the following prop-
erty : Vi € {L,...,N}, X; ~ gamma(i,1) = (X1/X5,..., Xn/X5) ~ Dir(p1,...,on)
where XZ‘ = Zz Xi.
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Fig. 1 Left: We compare the estimated distributions Z(V|v4) and Z(V|vB) and we see that
the distribution of model A’s MCC is better. Right: Empirical distribution of the precision
and recall.

4 Example

To illustrate our method, let us consider an example with two classifiers A and B,
respectively producing the two following confusion matrices on the same testing
data set 7 where N = 145 :

65 15 A
{35 30] = v = (65,30,35,15)
50 30 5
{30 35] = B = (50,35, 30, 30).

The superscript above v indicates the model from which the confusion matrix
is coming from. If Z is the Matthews Correlation Coefficient (MCC), then in our
example we have Z(v*) = 0.2946 and Z(v®) = 0.1635. Based on this criteria,
it seems that the classifier A outperforms the other one. But we don’t have any
information to decide if this is really the case or due to chance.

Let us now adopt the Bayesian framework with o« = (0,0,0,0). From equa-
tion (6), the a posteriori distributions of the unknown parameters 6 are :

(BJv?, @) ~Dir(w = (65,30, 35, 15))
a=(0,0,0,0) =
(OB)v?, a)~Dir(w = (50, 35, 30, 30))

By using the algorithm 1, let ¢° = (gi,...,g%,) be a set with M = 1,000,000
random samples generated from Z(V|v*) where i € {A, B}.

In the left part of figure 1, we used g and ¢? to show the estimated distribu-
tions of Z(V[v) and Z(V|v®). As expected, model A seems better than model B.
Adopting the Bayesian point of view, gA and ¢® can also be used to infer other
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quantities such as :

I(g2 > 0) ~ 0.92

==
B

P(Z(WV]W?) > 0) ~
1

3
I

PV > (V) ~

==
M=

A B\ .
11 (gm > gm) ~ 0.79

m

Clo.05(Z(V|v®)) ~ hpd(gh) ~ [-0.07,0.39].

where C1 stands for credible interval. The first value means that we have 92%
plausibility that the MCC of model B is positive. The second value shows that
we have a high degree of plausibility that model A really outperforms model B
in terms of MCC. The last equation gives a 95% credible interval for the MCC
of model B. To compute the credible interval, we extract the highest posterior
density(hpd) [5]. The hpd is a more robust way to extract intervals when the
distribution is asymmetrical.

It is also possible to study the joint distribution of more than one performance
indicator. As already mentioned, in line 5 of algorithm 1, we can compute the value
of two indicators instead of only one. In the right part of figure 1, we display 1,000
samples of the recall and precision generated from the confusion matrix of model A.
Many statistics can be extracted from this scatter plot. We can, for example, infer
that the Pearson correlation has a 95% chance of being in the interval [0.21,0.32].

5 Adding prior knowledge in the distribution

As already mentioned, the Bayesian framework allows us to inject prior knowledge
into the a posteriori. Two distinct situations can occur : either we are in a situation
of complete uncertainty about the distribution, or we have some prior knowledge
to inject in the a posteriori distribution.

In the first case, the Dirichlet probability function fe(f) achieves maximum
entropy when o = (1,1,1,1). From equation (5), we can see that the a priori
distribution fe(0) o« I (6 € Sp) is then an uniform distribution on the probability
simplex Sp. This means that if there is no prior knowledge to inject in the a
posteriori, we can just switch all the a values to one.

In equation (6), the values a@ = (a1, a2,a3,a4) and v = (v1,v2,v3,v4) are
coming from the a priori knowledge and the confusion matrix, respectively. The
vector w with the parameters of the distribution fey(0|v) is the sum of o and
v. The duality between a and v in equation (6) suggests that this prior conveys
the same information as a pilot fake test where the model would have been tested
four times, with a = (1,1, 1, 1) containing the number of times TP, TN, F'P and
F'N appear during this test. So, by using this prior, we inject a small bias in the
a posteriori distribution. Therefore, someone choosing a uniform prior is not in a
state of complete ignorance as (s)he discards the possibility of having a value equal
to zero in the confusion matrix. This suggests that we take as prior an improper

3 Roughly speaking, improper means that we lose the fundamental property of a probability
density function that its integral must be one.
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Fig. 2 Left: we compare the distributions of Z(V|v4, a®) and Z(V|v4, al). We observe that the
impact of using a! is relatively low. Right: Evolution of the distribution when prior knowledge
is injected in the distribution.

Dirichlet distribution where a = (0,0, 0,0), as it is equivalent to the absence of a
pilot study [5]. This « has the advantage of injecting no bias in the a posteriori,
but the drawback is that by using this improper a priori distribution fo(6), we
are not guaranteed to obtain a proper a posteriori distribution fg)y (0|v). If one
of the elements in the observed confusion matrix v is a zero, then the a posteriori
distribution will also be improper.

Let us take from section 4 the same confusion matrix v = (65, 30,35, 15),
and let us compare the impact on the a posteriori where a = (0,0,0,0) or o =
(1,1,1,1) are used as prior. From equation (6), the a posteriori distribution of the
unknown parameters 6 are :

a® = (0,0,0,0)=(0]v", a") ~ Dir(w = (65, 30, 35,15))
ol = (1,1,1,1)=(Ov*, a*) ~ Dir(w = (66,31, 36, 16))

Algorithm 1 is used to generate M = 1,000,000 samples from both random vari-
ables Z(V|v4,a%) and Z(V|v4, al). In the left part of figure 2, we used g° and
g to display the curve of the two distributions. As we can see, there is a minor
impact when o' = (1,1,1,1) is injected as prior knowledge.

A scientist is often not in a state of perfect ignorance with respect to the
performance of the models that (s)he is using. This prior knowledge can come
from the scientist’s experience or from previous studies done in the same context.
The prior knowledge can be injected directly via @ = (a1, a2, a3, aa). For example,
as a1 and a2 contain the prior information about #7TP and #TN respectively
and if prior studies show that we should have an accurate model, we can use
a = (a1,a2,1,1) and set a1, az to a high value. This is a very approximate and
imprecise way of adding prior knowledge.

Note that adding prior knowledge could have a negative impact if the knowl-
edge that was injected was wrong. In this case, a bias would be added in the a
posteriori distribution, but its impact would decline when the number of elements
in the testing set N7 increases.
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Injecting prior knowledge directly via o = (a1, a2, a3, a4) is sometimes dif-
ficult, even for experts in the application area. Therefore, it is often easier to
compute the values in « in an indirect way. Rather than information on «, the
scientist often has more knowledge/intuition about the values of some classical ac-
curacy measures. If we define p = #TP/(#TP+#FP),r = #TP/(#TP+#FP)
and a = (#TP+#TN)/(#TP+#FP+#FN+#TN) as the precision, the recall
and the accuracy respectively, then we can see that

m(l—a)r
o1 = #TP = p%(»r72)7"]§)
ag = #TN am — #TP
8
as = #FP m(1—a)r(1—p) ®
p+r—2rp
— m(l—a)(1-r)p
as=#EN =T

where m = #TP +#FP+#FN+#TN >0and 7' 4+p~ ! —a~! > 1. The last
inequality is there to ensure that #TN > 0.

Let us now evaluate the impact on the a posteriori distribution when we inject
prior knowledge in the confusion matrix vB = (50, 35,30,30). Assume that a
scientist can make the following assumption about model B : precision = 0.6,
recall = 0.65 and accuracy = 0.6. From equation (8), we have :

#TP = 0.3319149 x m
#TN = 0.2680851 x m
#FP = 0.2212766 x m
#FN = 0.1787234 x m

where m is a parameter used to put a weight on the prior. We tested the two
following values for m : m = N7 /2 = 72.5 and m = Ny 5 = 725, and obtained
the following distribution for the parameters :

(©[v”,a") ~ Dir(w = (50, 35, 30, 30))
(O[?,a™="%) ~ Dir(w = (74.063, 54.436, 46.042, 42.957))
(Ov?,a™="%) ~ Dir(w = (290.638,229.361, 190.425, 159.574))
where, for example, 74.063 is obtained by doing 50 + 0.3319149 x 72.5. The right
part of figure 2 shows the impact when prior knowledge is added. We see that

adding prior knowledge reduces the variance of the distribution, and that this
reduction amplifies when m increases.

6 Bootstrap and Bayesian approach

The bootstrap method is another technique that can be used to approximate
the distribution of Z(V|v) in an easy and accurate way. Note that the bootstrap
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is often used in machine learning to estimate the generalization accuracy of a
learning algorithm by bootstrapping the training set. But this is not what we will
do here. As we assume in this paper that we don’t have access to the training set,
we will do the bootstrap directly on the confusion matrix.

Given a testing set 7 and a model h, the vector M = (Ay,..., Ay, ) con-
tains the N4 values of the loss function computed on 7 and the vector V is an
aggregation of M where we count in #71TP, #T' N, #FP and #FN the number
of times we have observed TP, TN, FP and F N, respectively. For bootstrap, B
samples {M*(l), A M*(B)} are generated where M*®) = (Af(b), R A}k\;i)) is
obtained from M by doing Ny random samplings with replacement. After ag-
gregating M*® in V*®_ the B vectors V*®) are used to compute the B values
A (V*(b)). These B values can then be used to infer properties about the distribu-
tion of the statistic Z(V|v). The following algorithm formalizes the process.

Algorithm 2 Generating random samples from G by bootstrap

1: function BOOT-SAMPLER(Z, M, B)
2: for b + 1 to B do
M*(®) « Random sampling with replacement in M
V*(®)  Aggregate(M*(®))
g*(0) Z(V*(b))
end for
return g* = (¢*() ... g*(B))
end function

In section 3, we have assumed that the output of the loss function A could be
interpreted as the result of a random experiment with {T'P, TN, FFP, FN} as sup-
port set. Let P = {P(A =k)} with k € {TP,TN, FP,FN} be a set with the four
unknown probabilities associated to the four values in support of the loss function
A. Given the N7 observed values of the loss function, the maximum likelihood

estimator of these probabilities is P = {ﬁ(A = k)} where ]3(A = k) = #k/Nr.

In the bootstrap method, A*®) g obtained by doing a random sampling with re-
placement in M, which is equivalent to doing a sampling in {TP,TN,FP,FN}
with probabilities P. As the random vector V*® is a counting aggregation of
M*®)_ the random vector V*(® follows a multinomial distribution

~

V* ~ Mult(N7, P).

Compared to the Bayesian method studied in this paper, the previous equation
shows that the bootstrap method on M produces samples of the confusion matrix
that follow a multinomial distribution with four fized parameters. In the Bayesian
approach, we assume that these parameters themselves are uncertain and follow
a Dirichlet distribution. Roughly speaking, we can say that, in bootstrap, these
parameters follow a Dirac distribution.

As a consequence, by replacing the fixed parameters with random values, we
can see that the Bayesian approach has a tendency to have more variability in the
distribution of V. Let Z(V|v) and Z(V*) be the random variables for the perfor-
mance indicator functions obtained by the Bayesian approach and the bootstrap
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Fig. 3 Left: evolution of the interquartile range of the two methods when the number of
samples in the testing set 7 increases. Right: Compute, for each value of A, the difference of
the average of the samples generated by bootstrap and the average of the samples generated
by our method.

approach, respectively. By the law of total variance, we have

VI[Z(V)] = Ee [V [Z(V7)[6]] + Ve [E [Z(V7)[6]]
VZVIv)] = Ee [V [Z(V[v)|O]] + Ve [E [Z(V]v)|O]].

As there is no variability in the parameters for bootstrap, we have Vg [E [Z(V™)|O]]
0 and therefore Vo [E [Z(V|v)|O]] > Ve [E [Z(V*)|O)]]. As a consequence, V [Z(V|v)]
tends to be higher than V [Z(V*)], and accordingly, the variability of Z(V|v) ob-
tained by the Bayesian approach is often higher than the variability of Z(V*)
obtained by the bootstrap approach.

We will now compare our strategy with the bootstrap method, and see what
happens when the number of samples in the testing set 7 increases. Let e(\) =
Mt = (A65,A30, M35, \15) be a vector where A > 0. To simulate an increase of
N7, we will take the values of e(\) where A € (1,2,3,...,500). For each value
of A\, we generate 1,000,000 values of ge()‘) with algorithm 1 where o is used as
prior. The same number of values of g*e(A) is generated by the bootstrap method
described in algorithm 2. To compare our strategy with the bootstrap method, we
will compare the distributions of ¢¢» and ¢*¢* when X increases.

The left part of figure 3 shows the evolution of the interquartile distance of
ge()‘) and g*eo‘). Both curves are decreasing, meaning that the variability decreases
when more knowledge is available. As expected, we can observe that the variability
of the samples generated by the Bayesian method is always higher than that of
the samples generated by the bootstrap method. This can be explained by the fact
that the Bayesian method takes the variability of the unknown parameters into
account, whereas the bootstrap assumes them to be fixed. But we can also notice
that the relative distance between the two curves reduces when N7 increases. This
is due to the fact that when more information is available, the variability of the
unknown parameters declines. Therefore, if N7 becomes too great, the variability
of the unknown parameters will become almost null and the two curves will join.
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data set Full data set name nb obs. nb var v
’ number ‘ input ‘

1 Iris 150 4 V5="*“versicolor”

2 Wine 178 13 V1i=“1"

3 Blood Transfusion 748 4 V5=¢1”
Service Center

4 Pima Indians Dia- 768 8 VI9=«1”
betes

5 Mammographic 961 5 V6=41"
Mass

6 Glass Identification 214 10 V11=%1”

7 Fertility 100 9 V10=¢“0O”

8 Ecoli 336 7 V8="*“cp”

9 Abalone 4177 8 V9=49”

10 Banknote Authen- 1372 4 V5=“1"
tication

11 Car Evaluation 1728 6 V7=*%“acc”

12 Chess (King-Rook 3196 36 V37=*“won”
vs. King-Pawn)

13 Connectionist 208 60 V61=“M"
Bench (Sonar)

14 Contraceptive 1473 9 V10=“1”
Method Choice

15 Haberman’s Sur- 306 3 V4=42”
vival

16 Hayes-Roth 132 3 V4=41"

Table 1 This table lists the 16 well known real data sets extracted from the UCI Machine
Learning Repository and used for the experiments. As we are considering binary classification
tasks, in the last column (1) we have indicated the number of the variable used as output
and the value for which the output equals true.

Thus, the Bayesian approach tends to produce distributions with higher variance,
but one must take into account the ignorance regarding the parameters § when
N7 is small.

The right part of figure 3 shows, for each A, the difference between the empirical
mean of the samples in ge(’\) and g*e(’\). As we can observe, the curve oscillates
around the value 0. This means that, on average, the two methods return samples
with the same empirical mean. This is confirmed by the fact that a t-test cannot
exclude the null hypothesis that the mean of the 500 values, in this figure, equals
0 (p-val = 0.67).

7 Experimentation

In this section, we propose two types of experiments. First, we will use real data
sets to assess our method’s ability to construct accurate credible intervals for
different performance indicators. In the second part, we will evaluate our method
in a context where the testing sets are sent to the model sequentially, in a series
of small chunks. This will allow us to evaluate the possibility of injecting prior
knowledge sequentially in the distribution.
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7.1 Constructing accurate credible intervals

For the first experiment, we will use random forest models and the data sets
described in table 1. As performance indicators, we will use the accuracy, the
G-score and the Fi-score. Algorithm 3 describes the experimental design.

Algorithm 3 Experimental design

1: function TEST(L,Z,0)
2: score < 0

3 for [ < 1 to 2000 do

4 (D,T,S) < randomSplit(L)

5: R < randomForest(D)

6: v < getConfusionMatrix(R, T)

7 g MC—Sampler(I, af, v, 1000) > See algorithm (1)
8: C « getCrediblelnterval(g, §)

9: vs + getConfusionMatrix(R, S)

10: if Z(vs) € C then

11: score < score + 1

12: end if

13: end for
14: return score/2000
15: end function

The inputs of the experimental design are a data set £, a performance indicator
function Z and a probability J for the credible interval. In line 2, a variable score is
initialized at 0. The value of this variable will be returned at the end of the function
and used, as the coverage probability, in table 2. The main loop is between lines 3 —
13 and is repeated 2,000 times. In this loop, the data set is first split in three sub-
sets. It is a stratified random sampling, and each sub-set has the same number of
elements. In line 5, the learning data set D is used with a random forest algorithm*
to generate the model R. This model is used in line 6 to compute the confusion
matrix v on the testing data set 7. The algorithm 1 described in section 3 is then
used on v to generate a set with 1,000 samples. As some data sets are very small,
to avoid introducing too many biases, we use a = (0,0,0,0) as prior in line 7.
In line 8, the credible interval C is computed. To get C, we extract the highest
posterior density (hpd) from the samples in g. Now that we have C, the model R
is reused on S to obtain a new confusion matrix vs in line 9. Note that as 7 and
S are independent, so are the two confusion matrices v and vs. In lines 10 — 11,
we check whether the new performance indicator is in the credible interval C. At
line 14, the function returns the proportion of time that Z(vs) was in C.

The experimental results are to be found in table 2. This table describes the
experiment results obtained on the 16 well-known real data sets and the three
measures (accuracy, G-score and Fi-score). Coverage probability gives the propor-
tion of times that Z(vs) was in the interval, and Awverage length of CI gives the
average length of the 2,000 credible intervals.

As expected, we can see that for each case, when the confidence § increases,
so does the average length of the intervals. Sometimes we also notice that to get
a high confidence, the average size of the intervals must remain small. That is the

4 We used R’s randomForest package [8] with the default learning parameters.
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Accuracy
5 =0.90 5 =095 5 =0.99
data avg(Z(v)) || Coverage Average Coverage Average Coverage Average
set probabil- length of probabil- length of probabil- length of
number ity C1 ity C1 ity CI
1 0.95 0.805 0.1058 0.901 0.1333 0.9515 0.1802
2 0.97 0.785 0.0599 0.8015 0.0735 0.8105 0.1048
3 0.76 0.947 0.1234 0.9755 0.1463 0.9975 0.1901
1 0.76 0.9165 0.1216 0.96 0.1444 0.987 0.1877
5 0.82 0.9005 0.0973 0.942 0.1155 0.986 0.15
6 0.99 0.8155 0.0157 0.8225 0.0203 0.8315 0.0297
7 0.87 0.9965 0.2347 0.999 0.2782 1 0.3568
8 0.96 0.8215 0.0773 0.897 0.0924 0.97 0.1221
9 0.83 1 0.0464 1 0.0551 1 0.0715
10 0.99 0.8305 0.0209 0.917 0.0247 0.9705 0.033
11 0.91 0.923 0.0539 0.958 0.0639 0.989 0.0834
12 0.98 0.878 0.0204 0.931 0.0243 0.988 0.0318
13 0.78 0.8765 0.2171 0.9385 0.2576 0.9845 0.3348
14 0.7 0.9035 0.0946 0.947 0.1125 0.993 0.146
15 0.72 0.9675 0.1988 0.985 0.2355 0.9985 0.3055
16 0.75 0.901 0.2807 0.943 0.3314 0.987 0.4288
[ Conf.Int. [ [[ [0.86,0.93] | [0.07,0.15][[ [0.90,0.96] [ [0.08,0.18]][ [0.93,1.00] | [0.11,0.24]]
G-score
5 = 0.90 5 =0.95 5 = 0.99
data avg(Z(v)) Coverage Average Coverage Average Coverage Average
set probabil- length of probabil- length of probabil- length of
number ity CI ity CI ity CI
1 0.89 0.8315 0.0836 0.898 0.1019 0.948 0.1423
2 0.94 0.774 0.0442 0.812 0.0564 0.8645 0.0814
3 0.25 0.955 0.0874 0.9835 0.1034 0.998 0.1346
1 0.44 0.933 0.1011 0.9755 0.1199 0.9955 0.1562
5 0.64 0.903 0.0992 0.961 0.1175 0.99 0.1524
6 0.99 0.8305 0.0115 0.8275 0.0145 0.8805 0.0226
7 0.07 0.993 0.1297 0.9995 0.156 1 0.207
8 0.91 0.8435 0.0696 0.923 0.084 0.9765 0.1113
9 0.07 1 0.0266 1 0.0315 1 0.0409
10 0.97 0.8435 0.019 0.9095 0.0227 0.9715 0.0301
i1 0.73 0.9305 0.0359 0.9635 0.0426 0.9965 0.0554
12 0.95 0.8755 0.022 0.9425 0.0262 0.986 0.0341
13 0.57 0.886 0.2764 0.948 0.329 0.99 0.4293
14 0.37 0.945 0.0897 0.9745 0.1062 0.9955 0.1379
15 0.18 0.974 0.1433 0.984 0.1694 0.999 0.2209
16 0.48 0.9005 0.2604 0.959 0.3085 0.9875 0.4004
[ Conf.Int.]] [[ [0.87,0.94] [ [0.05,0.14]][ [0.91,0.97] [ [0.06,0.16]][ [0.95,1.00] | [0.08,0.21]]
F{-score
5§ =0.90 5 =10.95 5 = 0.99
data avg(Z(v)) || Coverage Average Coverage Average Coverage Average
set probabil- length of probabil- length of probabil- length of
number ity C1 ity C1 ity C1
1 0.96 0.8355 0.0847 0.9105 0.1057 0.9495 0.1492
2 0.98 0.78 0.0449 0.815 0.0574 0.814 0.0832
3 0.85 0.962 0.0884 0.9855 0.1048 0.998 0.1365
4 0.82 0.9455 0.1021 0.9705 0.1214 0.996 0.1581
5 0.83 0.9065 0.0997 0.957 0.1184 0.9945 0.1538
6 1.00 0.8265 0.0113 0.8225 0.0151 0.8345 0.0215
7 0.93 0.996 0.1352 0.9995 0.1639 T 0.2204
8 0.96 0.861 0.0715 0.927 0.0855 0.98 0.1147
9 0.90 T 0.0281 T 0.0334 T 0.0433
10 0.99 0.85 0.0189 0.914 0.0226 0.976 0.03
i1 0.94 0.9145 0.0362 0.968 0.0429 0.9925 0.0558
12 0.98 0.869 0.0222 0.935 0.0263 0.9825 0.0342
i3 0.74 0.9055 0.2866 0.946 0.3419 0.989 0.4409
14 0.75 0.942 0.0905 0.9795 0.1075 0.9965 0.1394
15 0.82 0.9725 0.1475 0.9935 0.1745 0.9995 0.2278
16 0.80 0.914 0.2659 0.9555 0.317 0.99 0.4145
[ Conf.Int. [ [[ [0.87,0.94] | [0.05,0.14]][ [0.91,0.97] [ [0.06,0.17]][ [0.94,1.00] | [0.08, 0.22]]

Table 2 Experimental results with the Bayesian approach

case for the data set number 10, with Fi-score as performance measure. In this
case, to have a coverage probability of 0.976, the average size of the intervals must
be only 0.03.

The last line of each sub-table in table 2 provides a t-based confidence interval
(with a = 0.05) of the mean of the 16 measures mentioned above. Concerning the
coverage probability, we can see that for each case, the confidence interval contains
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Fig. 4 Left: The distribution of Z(vs) and g for the Fi-score on the data set 6. Right: The
distribution of Z(vs) and g for the F-score on the data set 13.

the target confidence 6. However, in some instances, the coverage probability stays
far from the target value. That is the case for the Fi-score with data sets number
6 and 9, where the coverage probability is respectively too small and too high.

Figure 4 displays the density estimation of Z(vs) and g computed for the 2,000
loops in algorithm 3. Z(vs) is the value of the performance indicator computed on
the independent testing set S. g is computed at line 7 of algorithm 3. g is a vector
with 1,000 values, and the 2,000 vectors are put together to compute the density
of g in figure 4. In figure 4, we display the curve of Fi-score for data sets 6 and
13.

For the case number 6 in table 2, the coverage probability is lower than target
§. In this instance, Z(v,) only takes a small set of distinct values °. That is why we
observe waves in the density estimation of Z(vs) in the left part of figure 4. In these
conditions, the Bayesian method tends to overgenerate samples with g = 1. In the
figure, we observe a high density for the value one (hatched lines). As the credible
intervals C are taken from g, C tends to be too small, and therefore the coverage
probabilities are lower than §. We empirically observe that this phenomenon hap-
pens when the distribution is close to the boundary of the values the performance
indicator can take ©.

In the right part of figure 4, we see that g follows Z(vs) better. That is why for
case 13, the coverage probabilities are almost equal to § in the F-Score of table 2.

We also did a numerical comparison with the bootstrap approach. To achieve
this, we reused the same experimental design described in algorithm 3 where, at
line 7, algorithm 1 is replaced by algorithm 2. The experimental results are to be
found in table 3, where the Coverage probability and the Average length of CI are
only computed for § = 0.90. Compared to the previous results, the average lengths
of credible intervals C are always smaller than those produced by the proposed

5 On the 2,000 loops, the function Z(vs) was equal to one 1,395 times.

6 We did the experiment with the bootstrap method presented in section 6, and we observed
that bootstrap also has difficulties with these cases.
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Accuracy G-score Fq-score

3 = 0.90 5 = 0.90 5 = 0.90
data Coverage Average Coverage Average Coverage Average
set probabil- length of probabil- length of probabil- length of
number ity CI ity CI ity CI
1 0.6130 0.0842 0.7330 0.0658 0.7825 0.0687
2 0.7165 0.045 0.7115 0.0345 0.7140 0.0351
3 0.8275 0.0871 0.8650 0.0619 0.8935 0.0627
4 0.7670 0.0859 0.8390 0.0719 0.8475 0.0725
5 0.7355 0.0688 0.8005 0.0704 0.8045 0.0707
6 0.7955 0.0117 0.8285 0.0088 0.8445 0.0088
7 0.9845 0.1782 0.9790 0.0985 1 0.1019
8 0.6575 0.0577 0.7675 0.0531 0.7695 0.0535
9 1 0.0328 0.9985 0.0188 1 0.0199
10 0.6960 0.0153 0.7465 0.0144 0.7480 0.0142
11 0.7880 0.038 0.7995 0.0255 0.8105 0.0257
12 0.7355 0.0146 0.7515 0.0157 0.7675 0.0159
13 0.7405 0.1551 0.7790 0.1987 0.8055 0.2045
14 0.7710 0.0668 0.8350 0.0637 0.8425 0.0642
15 0.8905 0.1406 0.8890 0.1023 0.9185 0.1046
16 0.7835 0.1996 0.7840 0.1880 0.8125 0.1903

[ Conf.Int.][ [0.73,0.84] [ [0.05,0.11]][ [0.78,0.86] | [0.04,0.1] [[ [0.79,0.88] [ [0.04,0.1] |

Table 3 Experimental results with the bootstrap approach

approach”. This has already been observed in the left part of figure 3. The fact
that the bootstrap approach tends to produce narrower credible intervals could
explain why the Coverage probability is lower in table 3. We can even see that the
t-based confidence interval of the Coverage probability at the last line of table 3
never contains the target confidence § = 0.90. This means that the sizes of the
credible intervals are too small. By taking into account the ignorance regarding
the parameters of the multinomial distribution, the Bayesian approach tends to
produce distributions with higher variance.

7.2 Testing models sequentially

We will now evaluate the possibility of using the Bayesian interpretation of the
confusion matrix in an online context.

In the following experiment, the model is evaluated sequentially on a series of
small testing data sets (71,...,7;,...,7Tr) and, at each step [, a confusion matrix
vy is computed from 7;. The fact that the same model is tested sequentially gives
the possibility of improving at each step [ the knowledge that we have about the
performance accuracy. Thanks to the Bayesian framework, at step [, we have an
elegant way of injecting prior knowledge that we have accumulated during the
previous steps. At each step, a credible interval will be computed and we will
check over time whether it contains the true value or not. Tiny intervals will be
used. This will make it possible to see if a small credible interval can contain the
true value of the performance indicator. To get such small intervals, we will put
the confidence level at 10%.

We don’t have access to the true performance of the models. To get a good
estimation of the true value of the performance indicator, we need a very extensive
data set, and that is why we will synthetically generate the data from the following

7 For instance, in table 2 with § = 0.90, the average length of credible intervals for the accu-
racy is 0.1058 when the Bayesian approach is used on the data set number 1. The corresponding
average length in table 3 is 0.0842
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equation:

v — {191, if sin(X{ 4 X3) + cos(X?) +cos(X3) +€>0.5 )

Yo, else

where
X1 ~Unif(0,3), X2~Unif(0,3) and e~ N(0,1).

The experimental design is described in the algorithm 4, where the MCC is
used as performance indicator Z.

Algorithm 4 Testing in a sequential design

1: function TEST SEQUENTIAL(T)
2 D <+ get 1,000 observations from equation (9)

3 R < randomForest(D)

4 T < get 20,000,000 observations from equation (9)
5: Upig < getConfusionMatrix(R, T)

6: a <+ (0,0,0,0)

7 for [ < 1 to 300 do

8 Ti < get 100 observations from equation (9)

9 v < getConfusionMatrix(R, T;)

10: g < MC-Sampler(Z, «, v;, 1000) > See algorithm (1)
11: C; < getCredibleInterval(g, 0.1)
12: a— o+

13: end for
14: return [Z (vyig), (C1,-..,C300)]
15: end function

The model that we will evaluate sequentially is built between lines 2 and 3.
The learning data set D is created at line 2 with 1,000 samples generated from
equation (9), and a random forest algorithm is used at line 3 to generate the model.
This model is stored in R. We will now try to estimate the true accuracy of the
model, and for that purpose, another data set is generated at line 4 from the same
equation (9). This data set contains twenty million samples and is used at line
5 to compute a confusion matrix vy;q. We use twenty million samples to obtain
a good estimation of the (unknown) true accuracy of R. This confusion matrix
Upig Will be returned as output of the function at line 14. At line 6, we initialize
the sequential tests by putting a = (0,0, 0,0). This stands for complete ignorance
at the first loop (that is I = 1). The sequential tests are done between lines 7
and 13. At line 8, a small data set with only 100 observations is generated from
equation (9). This data set is used at line 9 to compute a confusion matrix. The
sampling algorithm 1 is used at line 10. To get a credible interval C;, at line 11,
hpd is extracted from the samples in g. We want small credible intervals, which
is why the confidence is put at 10%. At line 12, the a prior: is updated with the
new values for the next step. At line 14, the list with the 300 confidence intervals
is returned as well as the value of the indicator function computed on the big data
set.

The result of a run of algorithm 4 is available in the left part of figure 5. We
observe in figure 5 that the Bayesian method provides a way to add the a prior
knowledge from the previous loops and that, at 150 loops, the true value is always
within the boundaries defined by credible intervals.
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Fig. 5 Left: A run of algorithm 4. The horizontal line is the value of 7 (Uln‘g)- Right: After
200 runs of algorithm 4, we count the number of times that the true value is in the credible
interval.

We have repeated this process 200 times and counted, for each step [, the
number of times the credible interval C; contained the true value. The result is
available in the right part of figure 5. Although the confidence interval is very small,
we see that after 150 loops, the true values are very often within the boundaries
defined by the credible intervals (approximately 90% of the time).

8 Conclusion

In this paper, we have proposed a new way of dealing with the uncertainties a sci-
entist can have about the performance indicators of a classifier (s)he can extract
from a confusion matrix. In our work, we assume that the scientist does not have
access to the learning or testing set. (S)he only has access to the confusion matrix.
We have shown that the values of said matrix can be assumed to be generated from
a random vector following a multinomial distribution, and by taking the Bayesian
point of view, we have assumed that the unknown parameters of the multinomial
distribution themselves are generated from a random vector following a Dirichlet
distribution. We made a theoretical and empirical comparison between the boot-
strap method and our method, based on the Bayesian framework. With o used
as prior, we showed that both methods returned samples with the same mean and
that the variance of the distribution generated by bootstrap was lower. This can
be explained by the fact that the bootstrap method does not assume uncertainty
about the unknown parameters of the multinomial distribution. Thanks to the
Bayesian framework, we have shown that prior knowledge can easily be injected
in the distributions, and that it reduces the uncertainty we can have about the
distribution of the performance indicators. Experimental results show that our
method can be used to construct accurate confidence intervals for the unknown
performance indicator.
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