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Purpose - The K-armed bandit problem is a well-known formalization of the exploration

versus exploitation dilemma. In this problem, a player is confronted to a gambling machine

with K arms where each arm is associated to an unknown gain distribution. The goal of

the player is to maximize the sum of the rewards. Several approaches have been proposed in

literature to deal with the K-armed bandit problem. Design/Methodology/Approach

- This paper introduces the concept of “expected reward of greedy actions” which is based

on the notion of probability of correct selection (PCS), well-known in simulation literature.

It is used to propose a semi-uniform algorithm which relies on the dynamic programming

framework and on estimation techniques to optimally balance exploration and exploitation.

Originality/Value - We introduce the notion of expected reward of a greedy action for

which five estimators are proposed and compared. This notion is used in an original dy-

namic programming algorithm, called DP-greedy, which selects at each round which among

a random or a gredy strategy is the one providing the highest expected gain. Experiments

with a set of simulated and realistic bandit problems show that the DP-greedy algorithm is

competitive with state-of-the-art semi-uniform techniques.

Key words: K-armed bandit problem; Dynamic programming; Applied probability; Assign-

ment

History:

1. Introduction

In many real-world problems, decisions are made in order to maximize a gain function either

explicitly or implicitly. This task is not trivial if the knowledge about the state of the

environment is either partial or uncertain. In this context, it might be convenient to make

decisions in the short-term to reduce the degree of uncertainty than to maximize the reward.

An example of such a situation is the design of clinical trials to assess and compare a

set of new medical treatments (Hardwick and Stout, 1991). Here, the goal is to determine
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the best treatment while minimizing the inconveniences for the patients. Another example

is the business problem of selecting the best supplier on the basis of incomplete informa-

tion (Azoulay-Schwartz et al., 2004).

The main issue in these two examples is how to combine an exploitation policy which

targets immediate reward based on the acquired knowledge with an exploration policy which

prefers to obtain additional insight by performing suboptimal actions.

The K-armed bandit problem, first introduced by Robbins (Robbins, 1952), is a classical

instance of an exploration/exploitation problem (Meuleau and Bourgine, 1999) in which a

casino player has to decide which arm of a slot machine to pull to maximize the total reward

in a series of rounds. Each of the K arms of the slot machine returns a reward which is

randomly distributed and unknown to the player. The player has to define a sequential

selection policy on the basis of limited knowledge about the reward distributions which

derives exclusively from previous results.

A taxonomy proposed in (Vermorel and Mohri, 2005) classified the many approaches that

exist in the bandit problem literature into the following main families :

• the semi-uniform strategies (Watkins, 1989), which are characterized by the alternation

of two working modes, namely the exploration mode and the exploitation mode;

• the interval-estimation strategies, like UCB1 (Auer et al., 2002) and β − UCB (Au-

dibert et al., 2006), which rely on upper bounds of the confidence intervals of the

rewards;

• the probability-matching strategies, like SoftMax (Vermorel and Mohri, 2005) and

Exp3 (Auer et al., 1995), which choose arms according to a probability distribution

that measures how likely the arms are close to the optimal.

• the index based strategies, like the Gittins index (Gittins, 1989), which is a solution

based on the dynamic programming framework. This approach computes an index for

each arm and selects the one with the highest index.

In this paper, we will focus on a new semi-uniform algorithm based on dynamic pro-

gramming (Bertsekas, 1987; Powell, 2007). The simplest semi-uniform approach is the pure

exploitation policy where the player keeps an updated estimate of the gains of the arms and

at each round greedily chooses the arm which on average performed the best so far. Pure
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exploitation uses current knowledge to select the seemingly best arm without reserving any

time to explore what seems to be inferior arms. A possible alternative to a pure exploita-

tion is the ε-greedy policy (Watkins, 1989) which preserves a fixed fraction of the rounds,

quantified by a parameter ε, for performing random uniform selection.

A variant of the ε-greedy is the ε-decreasing-greedy policy (Vermorel and Mohri, 2005)

where the exploration rate is set initially to a high value and then gradually decreases.

For specific conditions on the initial parameters of ε-decreasing-greedy, (Auer et al., 2002)

found an upper decreasing bound on the probability of selecting a sub-optimal arm. This

means that after enough rounds, a player adopting the ε-decreasing-greedy policy has a high

probability of selecting the best arm.

Most of existing semi-uniform algorithms rely on parametrized selection policies where

the parameter (e.g. ε) is often set in an empirical manner. What we propose here is instead

to adopt a data driven estimation approach to balance exploitation vs. exploration on the

basis of historical data. The idea is to estimate from data the probability that a greedy

selection returns the best arm and consequently to estimate the expectation of the reward

once a greedy action is done. The probability of success of a greedy action is well-known in

simulation literature as the probability of correct selection (PCS) (Kim and Nelson, 2006;

Caelen and Bontempi, 2007). Here we extend existing work by (i) using the notion of PCS

to define the expected greedy reward, (ii) studying in analytical and experimental terms the

evolution of the expected greedy reward and (iii) proposing and comparing several estimation

algorithms to compute this quantity from data. The expected greedy reward becomes then

the quantity which should be taken into account, instead of the observed maximum average

reward, to judge the utility of a greedy step.

The resulting algorithm is a new semi-uniform bandit algorithm called Dynamic Pro-

gramming greedy (DP-greedy in short). The algorithm has these main characteristics : (i)

it uses intensively estimation techniques to compute from data the expected reward of a ran-

dom selection and the expected reward of a greedy selection, (ii) it compares the expected

random reward and the expected greedy reward to “price” the exploration actions and the

exploitation actions, respectively, (iii) it uses a dynamic programming framework (Bertsekas,

1987; Powell, 2007) to balance the exploration and the exploitation expected rewards. Since

the DP-greedy algorithm adjusts the exploration-exploitation rate by comparing expected

greedy and expected random reward, its strategy favors exploration initially and, as long as

data are collected, switches gradually to a pure exploitation mode.
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Like the Gittins solution (Gittins, 1989), our approach is based on the dynamic program-

ming framework. However, it is worthy noting that in the Gittins formulation of the bandit

problem, the control variables are represented by the single arms. Gittins returns a score

index for each arms and the arm with the highest index is played. In our approach, the

control is carried out not at the arm level but at the policy level. The control variable can

take one of the two values: greedy action or random action. DP-greedy computes scores for

each actions (greedy and random) and the action with the highest score is performed.

The outline of this paper is as follows. A formal definition of the bandit problem is given

in Section 2. Section 3 introduces and motivates the semi-uniform DP-greedy algorithm in

the case of perfect information. This section ends with a discussion on the relation between

the Gittins solution and DP-greedy. The notion of expected reward of greedy actions is

introduced and discussed in Section 4. A set of data driven estimators of the expected greedy

reward is defined in Section 5. Section 6 describes the semi-uniform DP-greedy algorithm in

the case of imperfect information. Section 7 is devoted to an experimental assessment of

the DP-greedy algorithm for synthetic and real bandit benchmarks and we summarize our

contributions in Section 8

2. The bandit problem

This section formally defines the K-armed bandit problem and introduces the notation used

in the paper.

A K-armed bandit problem can be modeled by a set z# = {zk}, k = 1, . . . , K of K

random rewards1 zk with mean µk and standard deviation σk. Suppose that the goal of the

player is to maximize the collected rewards. If we denote

k∗ = arg max
k

µk

as the index of the optimal arm, we can associate to each arm k the regret

∆k = µk∗ − µk ≥ 0

which is a measure of the loss related to the selection of the kth arm instead of the optimal

one.

1We use boldface symbols to denote random variables.
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In a game fixed to have H rounds, the player is expected to select one of the K arms at

each round l, l = 1, ..., H . Let N(l) = [n1(l), . . . ,nK(l)] be a counting vector whose kth term

denotes the number of times that the kth arm was selected during the first l rounds and

Zk(l) =
[
z1

k, z2
k, z3

k, . . . , z
nk(l)
k

]
be the vector of identically and independently distributed

observed rewards of the arm k up to time l.

The bandit problem is an example of problem of imperfect state information (ISI) since

only measured observations of the underlying stochastic process are available. A typical way

of simplyfing such problems in dynamic programming relies on the assumption of certainty

equivalence where the problem is decomposed in two independent subproblems: an estima-

tion problem and a control problem applied to the perfect state information (PSI) version

of the original problem. In the rest of this section we will present both the PSI and ISI

formulation of the multi-armed bandit problem. The PSI control strategy will be outlined

in Section 3 while the estimation strategy will be discussed in Section 5.

In the PSI configuration, we define (i) the state sl ∈ S of the game at the lth round as

the set 〈{µk} , {σk} , {nk(l)}〉k=1,...,K and (ii) the policy of the player as a function π : S →
{1, . . . , K} which returns for each state s the arm k̃ to be selected.

In the ISI configuration, we define (i) the observed state ŝ(l) ∈ Ŝ of the game at the lth

round as the whole set of observations {Zk(l)}, k = 1, . . . , K and (ii) the adopted policy as

a function π̂ : Ŝ → {1, . . . , K} which returns for each state ŝ the arm k̂.

Two commonly adopted strategies in an ISI configuration are the pure random policy

and the greedy policy. The pure random policy neglects any information about the state at

time l and returns a selection

k̂r = π̂(̂s(l)) ∼ Uni(1/K, . . . , 1/K)

sampled according to an uniform distribution.

The greedy policy uses instead the information contained in ŝ(l) and returns

k̂g = arg max µ̂k(l)

where µ̂k(l) is the sample mean of the kth arm at the lth step.

Since Zk(l) is a random vector, the state ŝ and the output k̂ = π̂(̂s) of the policy are

random realizations too. At round l it is then possible to associate to a policy the expected

regret

δ(l) = µk∗ − IE
[
µ

k̂

]
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which quantifies the loss caused by the policy adoption. Note that µ
k̂

is a random variable

which denotes the average reward of the arm k̂ selected at the lth step.

Let us now calculate the quantity δ both in the case of a random and a greedy policy.

The expected regret of a uniform random exploration policy at round l is

δr(l) = µk∗ − 1

K

K∑

k=1

µk

= µk∗ − µr

where the term

µr =
1

K

K∑

k=1

µk (1)

will be referred to as the expected gain of a random exploration action.

The expected regret of a pure greedy exploitation policy at round l is

δg(l) = µk∗ −
K∑

k=1

Pk(l) · µk

= µk∗ − µg,

where

Pk̄(l) = Prob
{
arg max µ̂k(l) = k̄

}
(2)

is the probability that the greedy algorithm selects the arm k̄ at the lth step and

µg =
K∑

k=1

Pk(l) · µk (3)

will be referred to as the expected gain of a greedy exploitation action. Note that, unlike the

term (1), the term (3) is not constant for different values of l.

A measure of the global performance of a policy for an horizon H is returned by the

expected cumulative regret

ρH = H · µk∗ −
K∑

k=1

IE[nk] · µk. (4)

3. The semi-uniform DP-greedy algorithm

This section will introduce an optimal semi-uniform strategy, which is characterized by the

alternation of a random exploration mode and a greedy exploitation mode. According to
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the definition of the expected greedy gain in (3), the performance of a greedy policy at the

step l depends on the probability of selection Pk(l). In particular, the closer Pk∗ (i.e. the

probability of correct selection (PCS)) will be to one, the higher will be the gain deriving

from a greedy exploitation policy.

At the beginning of the games, that is when the values of l is low, it is unlikely that Pk∗(l)

would have converged to one and it is, however, interesting to carry out some random explo-

ration in order to accelerate the convergence of Pk∗ to one. These qualitative considerations,

common to all exploitation/exploration approaches (Sutton and Barto, 1998), can be put in

a formal framework by describing how, at each state of the bandit problem, the gain would

evolve in the case of either a random or a greedy step. For this purpose, it is interesting

to formulate the bandit problem as a Markov decision process (Puterman, 1994) with finite

horizon and study the semi-uniform optimal solution returned by a dynamic programming

approach (Bertsekas, 1987; Powell, 2007).

Accordingly with the certainty equivalence approach (Bertsekas, 1987), we design our

dunamic programming strategy assuming first a PSI configuration.

Dynamic programming concerns discrete time problems where at each time v, a decision

must be taken. A policy is a function which, for each state s ∈ S, returns the action u ∈ U

where U is the set containing all the possible actions. At state sv = i, the choice of an

action u may induce a transition probability pij(u) to the next state sv+1 = j where i ∈ S

and j ∈ S. At time v, the transition from state i to state j caused by u generates a gain

αvg(i, u, j) where g is a given gain function and 0 < α ≤ 1 is a discount factor so that the

future gain is less important than the present gain. We consider finite horizon problems with

V steps. In a V step dynamic problem, the expected gain of a policy π̃, starting from an

initial state i, is

J π̃
V (i) = IE

[
αV ·G (sV ) +

V −1∑

v=0

αv · g (sv, u, sv+1)

∣∣∣∣∣ s0 = i

]

where αV ·G (sV ) is the gain in the final state sV . Let us denote

J∗
V (i) = max

π̃
J π̃

V (i)

the maximum gain that can be obtained during V steps once the initial state is i. This

optimal gain function J∗
V can be shown to satisfy the recursive Bellman’s equation

J∗
V (i) = max

u∈U

∑

j∈S

pij(u) ·
(
g(i, u, j) + αJ∗

V −1 (j)
)

(5)
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where

J∗
0 (i) = G (i)

and the optimal decision satisfies

u∗ = arg max
u∈U

∑

j∈S

pij(u) ·
(
g(i, u, j) + αJ∗

V −1 (j)
)
. (6)

In this paper, we propose a new semi-uniform algorithm called DP-greedy. The DP-

greedy algorithm considers the bandit problem as a finite V -stages dynamic programming

problem in which at each stage two possible actions are available in the set U : a random

exploration action r and a greedy exploitation action g. For DP-greedy, policy π̃ is a function

π̃ : S → {r, g} which returns for each state s an action (either random or greedy).

Let sv = 〈{µk} , {σk} , {nv
k}〉, k = 1, . . . , K, be the state of the bandit problem at time v.

A transition from the state sv resulting in choosing arm k implies that an element of the set

{nv
k} is increased by one. Let us denote by sk

v+1 = 〈{µk} , {σk} , {nv
1, . . . , n

v
k + 1, . . . , nv

K}〉
the successor state of sv if arm k is tested. According to (2), Pk denotes the probability

that a transition from sv to sk
v+1 occurs when we perform a greedy action while 1/K denotes

the transition probability when we perform a random action. Note also that, whatever the

performed action is, a transition from sv to sk
v+1 returns a gain with expected value equal to

µk.

Once we have interpreted the bandit problem as a Markov decision problem, it is possible

to define the associated recursive Bellman’s equation. The V stage expected α discount

gain (5) for an optimal semi-uniform policy, starting in state sv, is

J∗
V (sv) = max

[
AV

g (sv) , AV
r (sv)

]
(7)

where

AV
g (sv) =

K∑

k=1

P sv

k ·
(
µk + α · J∗

V −1

(
sk

v+1

))

= µg (sv) + α

K∑

k=1

P sv

k · J∗
V −1

(
sk

v+1

)
(8)

and where

AV
r (sv) =

K∑

k=1

1

K
·
(
µk + α · J∗

V −1

(
sk

v+1

))

= µr + α

K∑

k=1

1

K
· J∗

V −1

(
sk

v+1

)
. (9)
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l

Figure 1: Notations. The horizon H is the total number of rounds. The step l is the
number of rounds already played. V is the number of stages for the dynamic program. W is
the number of pure exploitation greedy actions used to compute the value of the final gain
J∗

0 (sv).

Note that µg (sv) stands for the expected gain of a greedy action in state sv.

It follows from (7) that a semi-uniform optimal policy should return the action

u∗ =

{
g if AV

g (sv)− AV
r (sv) > 0

r if AV
g (sv)− AV

r (sv) < 0

in a state sv.

In spite of its optimality, a well known shortcoming of dynamic programming approach

is the high computational cost in case of a large horizon H (Powell, 2007). In this case a

possible remedy consists in (i) setting the number of stages V to a value lower than H − l

(e.g. H − l−W ) and (ii) define the gain of the last stage J∗
0 (sv) as the expected discounted

gain µW
G of a series of W greedy actions where W = H − l− V (see Figure 1). For a generic

state sw the quantity µW
G is recursively defined as follows

µW
G (sw) =

K∑

k=1

P sw

k ·
(
µk + β · µW−1

G

(
sk

w+1

))
(10)

µ1
G (sw) = µg (sw) ,

where P sw

k is the probability of moving from the state sw to the state sk
w+1 = 〈{µk} , {σk} ,

{nw
1 , . . . , nw

k + 1, . . . , nw
K}〉 once a greedy action is applied.

4. The expected reward of a greedy action

The previous section showed that the quantity µg (defined in (3)) and the related term Pk

(defined in (2)) must be known if we wish to implement an optimal semi-uniform bandit pol-

icy. Unfortunately these quantities are not accessible to the bandit player and an estimation

procedure is required if we want to use the DP-greedy algorithm in practice. It is however

interesting to remark that the definition of an optimal semi-uniform strategy relies on two

quantities that are related to the performance of a pure greedy strategy. This means that if
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we are able to understand the evolution of the bandit state in presence of a greedy strategy

we can have useful insight about the optimal semi-uniform policy.

For this reason, before discussing in Section 5 some estimation procedures, we present

here some interesting properties of the quantities µg and Pk.

First we will show that an analytical expression of the probability Pk̄ of selecting the k̄

arm in a greedy strategy can be derived in case of a bandit problem with normal distributed

arms.

Theorem 1. Let z# = {z1, . . . , zK} be a set of K > 1 normal reward distributions zk ∼
N [µk, σk] with mean µk and standard deviation σk and suppose that nk is given.

If the selection policy is greedy (arg maxk∈[1...K]{µ̂k}) then the probability of selecting zk̄ is

Pk̄ = Prob { r̂1 > 0 , . . . , r̂k̄−1 > 0 , r̂k̄+1 > 0 , . . . , r̂K > 0 } (11)

where (r̂1, . . . , r̂k̄−1, r̂k̄+1, . . . , r̂K)T follows a multivariate normal distribution

(r̂1, . . . , r̂k̄−1, r̂k̄+1, . . . , r̂K)T ∼ N [Γ, Σ]

with mean

Γ =




µk̄ − µ1
...

µk̄ − µk̄−1

µk̄ − µk̄+1
...

µk̄ − µK




,

and covariance matrix Σ

Σ =




σ2

k̄

nk̄
+

σ2
1

n1
· · · σ2

k̄

nk̄

σ2

k̄

nk̄
· · · σ2

k̄

nk̄

...
. . .

...
...

...
σ2

k̄

nk̄
· · · σ2

k̄

nk̄
+

σ2

k̄−1

nk̄−1

σ2

k̄

nk̄
· · · σ2

k̄

nk̄

σ2

k̄

nk̄
· · · σ2

k̄

nk̄

σ2

k̄

nk̄
+

σ2

k̄+1

nk̄+1

· · · σ2

k̄

nk̄

...
...

...
. . .

...
σ2

k̄

nk̄
· · · σ2

k̄

nk̄

σ2

k̄

nk̄
· · · σ2

k̄

nk̄
+

σ2
K

nK




where nk is the number of observations of zk.
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Proof. According to (2), Pk̄ is the probability that µ̂k̄ is the maximum in {µ̂1, . . . , µ̂K} :

Pk̄ = Prob
{
k̂g = k̄

}

= Prob

{
k̄ = arg max

k∈[1...K]
{µ̂k}

}

= Prob
{

µ̂k̄ > µ̂1 , . . . , µ̂k̄ > µ̂k̄−1 , µ̂k̄ > µ̂k̄+1 , . . . , µ̂k̄ > µ̂K

}

= Prob { r̂1 > 0 , . . . , r̂k̄−1 > 0 , r̂k̄+1 > 0 , . . . , r̂K > 0 } ,

where r̂k = µ̂k̄ − µ̂k. It follows that Pk̄ denotes also the probability that all the components

of the vector (r̂1, . . . , r̂k̄−1, r̂k̄+1, . . . , r̂K)T are positive. Under the assumption of Gaussianity,

this vector is a multivariate normal random variable




r̂1
...

r̂k̄−1

r̂k̄+1
...

r̂K




=




µ̂k̄ − µ̂1
...

µ̂k̄ − µ̂k̄−1

µ̂k̄ − µ̂k̄+1
...

µ̂k̄ − µ̂K




∼ N [Γ, Σ]

with mean vector

Γ =




µk̄ − µ1
...

µk̄ − µk̄−1

µk̄ − µk̄+1
...

µk̄ − µK




,

and covariance matrix

Σ =




σ2
r̂1,r̂1

· · · σ2
r̂1,r̂k̄−1

σ2
r̂1,r̂k̄+1

· · · σ2
r̂1,r̂K

...
. . .

...
...

...
σ2

r̂k̄−1,r̂1
· · · σ2

r̂k̄−1,r̂k̄−1
σ2

r̂k̄−1,r̂k̄+1
· · · σ2

r̂k̄−1,r̂K

σ2
r̂k̄+1,r̂1

· · · σ2
r̂k̄+1,r̂k̄−1

σ2
r̂k̄+1,r̂k̄+1

· · · σ2
r̂k̄+1,r̂K

...
...

...
. . .

...
σ2

r̂K ,r̂1
· · · σ2

r̂K ,r̂k̄−1
σ2

r̂K ,r̂k̄+1
· · · σ2

r̂K ,r̂K




Now, since µ̂i and µ̂j are independent for i 6= j

σ2
r̂j ,r̂j

= Var
(
µ̂k̄ − µ̂j

)
=

σ2
k̄

nk̄

+
σ2

j

nj
,
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it follows that

σ2
r̂i,r̂j

= σ2
r̂j ,r̂i

= cov
[
µ̂k̄ − µ̂i, µ̂k̄ − µ̂j

]

= IE
[
(µ̂k̄ − µ̂i − IE[µ̂k̄ − µ̂i]) ·

(
µ̂k̄ − µ̂j − IE

[
µ̂k̄ − µ̂j

])]

= IE
[
(µ̂k̄)

2
]
− µ2

k̄

=
σ2

k̄

nk̄

.

A major difficulty of the bandit problem is the dynamic and multivariate nature of the

terms involved in the definition of an optimal policy. For this reason, it is important to study

how the expected reward of a greedy action µg (3) changes with time.

We will first assume that z# contains only two arms where k∗ is the index of the best

arm and k̄∗ is the other index. This is the simplest case and some analytical results can be

derived about the time evolution of µg.

In particular, Theorem 2 shows that if K = 2 then testing z1 or z2 at round l will, in

both cases, improve the value of µg at round l + 1. The following Theorem 3 defines instead

an optimal exploration policy which maximizes µg at round l + 1.

Theorem 2. Let K = 2 and µg

(
sk

l+1

)
be the next expected reward of a greedy action when

arm k is tested at round l. Then

∀k ∈ {1, 2} , µg

(
sk

l+1

)
> µg.

Proof. ∀k ∈ {1, 2} , µg

(
sk

l+1

)
> µg if and only if ∀k ∈ {1, 2} , P l+1

k∗ (k) > Pk∗ where P l+1
k∗ (k)

is the probability of selecting the best alternative through a pure greedy algorithm at round

l + 1 if arm k is tested at round l.

By definition

Pk∗ = Prob {µ̂k∗ − µ̂k̄∗ > 0} (12)

and, under the assumption of Gaussianity,

(µ̂k∗ − µ̂k̄∗) ∼ N
(

µk∗ − µk̄∗ ,
σ2

k∗

nk∗

+
σ2

k̄∗

nk̄∗

)
.

Equation (12) can be rewritten as

Pk∗ = 1− Prob {µ̂k∗ − µ̂k̄∗ ≤ 0}

= 1− 1

2


1 + erf


 µk̄∗ − µk∗(

σ2
k∗

nk∗
+

σ2

k̄∗

nk̄∗

)√
2






12



where erf(·) is the Gauss error function (Tong, 1990). Because µk̄∗ − µk∗ is negative and the

derivative of the Gauss error function is allows positive, testing zk∗ or zk̄∗ will both increase

the probability of correct selection Pk∗ .

Theorem 3. Let us consider a bandit problem with two arms z# = {zk1
, zk2
} distributed

according to a normal distribution. The policy





if N∆ < 0 then test zk1

if N∆ > 0 then test zk2

if N∆ = 0 then test either zk1
or zk2

where

N∆ = nk1
· (nk1

+ 1) ·
(
σ2

k2
− σ2

k1

)
+ σ2

k1
· (nk2

+ nk1
+ 1) · (nk1

− nk2
)

maximizes µg at the l + 1th round.

Proof. If
[
µg

(
sk1

l+1

)
− µg

(
sk2

l+1

)]
is positive then zk1

must be tested to maximize µg at round

l + 1 and if
[
µg

(
sk1

l+1

)
− µg

(
sk2

l+1

)]
is negative then zk2

must be tested.

µg

(
sk1

l+1

)
− µg

(
sk2

l+1

)

= P l+1
k∗ (k1) · µk∗ + P l+1

k̄∗
(k1) · µk̄∗ − P l+1

k∗ (k2) · µk∗ − P l+1
k̄∗

(k2) · µk̄∗

=
[
P l+1

k∗ (k1)− P l+1
k∗ (k2)

]
· µk∗ +

[
P l+1

k̄∗
(k1)− P l+1

k̄∗
(k2)

]
· µk̄∗

=
[
P l+1

k∗ (k1)− P l+1
k∗ (k2)

]
· µk∗ −

[
P l+1

k∗ (k1)− P l+1
k∗ (k2)

]
· µk̄∗

=
[
P l+1

k∗ (k1)− P l+1
k∗ (k2)

]
· (µk∗ − µk̄∗)

= ∆Pk∗ · (µk∗ − µk̄∗) .

Since (µk∗ − µk̄∗) > 0, the sign of
[
µg

(
sk1

l+1

)
− µg

(
sk2

l+1

)]
is the same as the sign of ∆Pk∗ .

Let Vark1

(
µ̂

l+1
k∗ − µ̂

l+1
k̄∗

)
and Vark2

(
µ̂

l+1
k∗ − µ̂

l+1
k̄∗

)
be respectively the variance of

(
µ̂

l+1
k∗ − µ̂

l+1
k̄∗

)

at l + 1 if either zk1
or zk2

is tested at l. ∆Var is defined as the difference between the two

variances at l + 1. A reduction of the variance of
(
µ̂

l+1
k∗ − µ̂

l+1
k̄∗

)
improves the probability of

selecting the best random variable zk∗ . The sign of ∆Var is thus the opposite of the sign of

∆Pk∗ .

∆Var = Vark1

(
µ̂

l+1
k∗ − µ̂

l+1
k̄∗

)
− Vark2

(
µ̂

l+1
k∗ − µ̂

l+1
k̄∗

)

=
σ2

k1

nk1
+ 1

+
σ2

k2

nk2

− σ2
k1

nk1

− σ2
k2

nk2
+ 1

=
N∆

D∆

13



where

N∆ = nk2
nk1

(nk2
+ 1) σ2

k1
+ (nk1

+ 1)nk1
(nk2

+ 1)σ2
k2

− (nk1
+ 1)nk2

(nk2
+ 1) σ2

k1
− (nk1

+ 1)nk2
nk1

σ2
k2

= nk1

(
σ2

k2
− σ2

k1

)
(nk1

+ 1) + σ2
k1

(nk1
− nk2

) (nk1
+ nk2

+ 1)

D∆ = (nk1
+ 1) nk2

nk1
(nk2

+ 1)

Since D∆ > 0, the following policy





if N∆ < 0 then test zk1

if N∆ > 0 then test zk2

if N∆ = 0 then test either zk1
or zk2

maximizes µg at round l + 1.

The theoretical results discussed above do not easily extend to the case where K > 2. In

particular, in (Caelen and Bontempi, 2008) we performed an experimental study showing that

the evolution of µg is very complex for K > 2 and that the monotone property µg

(
sk

l+1

)
> µg

(Theorem 2) does not always hold when the quantity σ√
n

in the least rewarding arms is high.

This means that for K > 2 the working mode of a semi-uniform bandit policy affects

the evolution of µg. At the beginning of the task or when the reward variances of the arms

are high, random exploration is the best mode to improve the expected reward of a greedy

action and we show that greedy actions, which test the best alternative, can reduce the value

of µg at the next step such that the future PCS can decrease.

When enough knowledge is collected, such that the σ√
n

values are small, a good policy

should converge to a more greedy exploitation mode. The optimal balance of a semi-uniform

bandit policy between exploration and exploitation is therefore a non trivial function of the

evolution of µg.

5. Estimation of the expected greedy reward

In previous sections we assumed that the means and the standard deviations of the arm

distributions are known. This is of course an unrealistic assumption which can be relaxed

by adopting estimation techniques. In this section five different methods to estimate µg on

the basis of the observed rewards {Zk(l)}, k = 1, . . . , K, are introduced and discussed. An

experimental assessment of these five techniques will be later presented in Section 7.1.
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5.1. The naive estimator

The simplest way to design an estimator of the quantity µg is to take the sample average of

the arm

k̂g = arg max µ̂k(l)

that is the one returned by a greedy action. Unfortunately the following theorem shows that

such an estimator, henceafter denoted by µ̂
max
g , is a biased estimator of µg.

Theorem 4. Let us consider a set of K random variables {µ̂1, . . . , µ̂K} and the naive

estimator µ̂
max
g = max {µ̂1, . . . , µ̂K}. It can be shown that IE

[
µ̂

max
g

]
> µg.

Proof. Let k∗ = arg max{µk} be the index of the random variable with the highest mean

and a ≥ 0 be a non-negative real number. First, we will show that IE
[
µ̂

max
g − µ̂k∗

]
is positive

IE
[
µ̂

max
g − µ̂k∗

]
= IE[∆]

=

∫ ∞

0

xf∆(x)dx

≥
∫ ∞

a

xf∆(x)dx ≥ a

∫ ∞

a

f∆(x)dx =

= a · Prob {∆ ≥ a} .

Let ai be a positive sequence of real numbers decreasing to zero (ai = 1/i for example)

∞∑

i=1

Prob {∆ ≥ ai} ≥ Prob

{ ∞⋃

i=1

{∆ ≥ ai}
}

= Prob {∆ > 0} .

Since Prob {∆ > 0} 6= 0, we know that Prob {∆ ≥ ai} 6= 0 must be true for some ai and

thus IE
[
µ̂

max
g − µ̂k∗

]
> 0

IE
[
µ̂

max
g

]
− IE[µ̂k∗] > 0 ⇐⇒

IE
[
µ̂

max
g

]
> µk∗ ≥

K∑

k=1

Pk · µk = µg.

5.2. The plug-in approach

A possible alternative to the naive estimator discussed in the previous section is provided by

the plug-in approach (Efron and Tibshirani, 1993). By replacing in the definition of µg the

15



terms {µk} and {Pk} (Equation (11)) by their respective plug-in estimators {µ̂k} and {P̂k}
we obtain the estimator

µ̂
pl
g =

K∑

k=1

P̂k · µ̂k

In spite of its plug-in nature it can be shown that this estimator is biased too.

Theorem 5. Consider a set of K random variables {µ̂1, . . . , µ̂K}. If µ̂
pl
g =

∑K
k=1 P̂k · µ̂k is

the plug-in estimator of µg then IE
[
µ̂

pl
g

]
> µg.

Proof.

IE
[
µ̂

pl
g

]
− µg = IE

[
K∑

k=1

P̂k · µ̂k

]
−

K∑

k=1

Pk · µk

=

K∑

k=1

IE
[
P̂k · µ̂k

]
−

K∑

k=1

Pk · µk

=
K∑

k=1

(
IE
[
P̂k · µ̂k

]
− Pk · µk

)

=

K∑

k=1

cov
(
P̂k, µ̂k

)

where cov(·, ·) is the covariance function and P̂k is the estimated probability that k is the

index of the highest average. Since this probability term is proportional to µ̂k, the estimators

P̂k and µ̂k are positively correlated and consequently the bias term is different from zero.

5.3. The holdout approach

As shown in the proof of Theorem 5 the bias of the plug-in estimator derives from the corre-

lation of the two estimators P̂k and µ̂k. This section proposes an estimation technique which

decorrelates the terms P̂k and µ̂k by splitting the observed datasets into two overlapping

portions. Let

µ̂
A
k =

1

bnk/2c

bnk/2c∑

j=1

zj
k (13)

σ̂
A
k =

√√√√ 1

bnk/2c − 1

bnk/2c∑

j=1

(zj
k − µ̂

A
k )2 (14)
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be respectively the mean and the standard deviation estimations computed with the first

half of the samples and let

µ̂
B
k =

1

dnk/2e

nk∑

j=bnk/2c+1

zj
k (15)

σ̂
B
k =

√√√√ 1

dnk/2e − 1

nk∑

j=bnk/2c+1

(zj
k − µ̂

B
k )2 (16)

be the related estimations made with the remaining half of the samples. ¿From the holdout

estimates of mean and variance we can derive the holdout estimators P̂A
k and P̂B

k . Note that,

in spite of their holdout nature, both of these estimators use the entire set of N observations.

The resulting holdout estimator of µg can be defined as follows

µ̂
SPL1
g =

K∑

k=1

P̂A
k · µ̂B

k .

Note that a more robust version of the holdout estimator can be designed by taking advantage

of the averaging principle (Perrone and Cooper, 1993) according to which the average of two

unbiased estimators with the same variance leads to a resulting estimator which is still

unbiased but with half of the variance. The averaged estimator is

µ̂
SPL2
g =

1

2

(
K∑

k=1

P̂A
k · µ̂B

k +

K∑

k=1

P̂B
k · µ̂A

k

)
,

where both the decorrelated pairs (P̂A
k , µ̂B

k ) and (P̂B
k , µ̂A

k ) are taken into consideration.

The experimental session will assess the gain derived from the averaging version of the

holdout estimator.

5.4. The leave-one-out approach

This approach extends the holdout approach by adopting the well-known leave-one-out strat-

egy (Bishop, 2006). Let us define by D the number of leave-one-out iterations, such that for

d = 1, . . . , D and for each k, an index od
k is randomly chosen in the set {1, . . . ,nk}. Let

Zk(−od
k) =

{
z1

k, . . . , z
od

k
−1

k , z
od

k
+1

k , . . . , znk

k

}

be the set containing all the nk realizations of the kth arm with z
o

d
k

k set aside. The K samples{
z
od
1

1 , . . . , z
od

K

K

}
are now used to greedily select the best arm zb for the dth l-o-o iteration

17



where b = arg maxk

{
z
od

k

k

}
. Let us denote by µ̂

−od
b

b the leave-one-out estimation of the mean

of zb, that is the sample average of Zb(−od
b). Note that the estimate µ̂

−o
d
b

b is now decorrelated

with respect to the selected index b.

After D leave-one-out iterations, we obtain a set
{

µ̂
−o

1
b

b , . . . , µ̂
−o

d
b

b , . . . , µ̂
−o

D
b

b

}
of D es-

timations of the quantity µg each obtained on a different training set. The leave-one-out

estimator of µg is then

µ̂
loo
g =

1

D

D∑

d=1

µ̂
−o

d
b

b .

6. The imperfect information DP-greedy algorithm

In Section 3 we described the perfect information version of the DP-greedy algorithm where

the policy definition takes advantage of the full knowledge of the state in order to compute

Ag and Ar. Here, we introduce the imperfect information version of the algorithm where, at

each round, DP-greedy is assumed to have only a partial and noisy information about the

state.

An initialization phase, where each arm is tested I times, gives us an initial prior dis-

tribution of the states. Suppose that we test the kth arm at round l and that we receive a

reward z
nk(l)+1
k . Let us add the reward to the vector Zk(l) = [z1

k, z2
k, . . . , z

nk(l)
k ] and let us

define ŝl = {Zk(l)}k=1,...,K as the state of the dynamic programing problem with imperfect

state information.

In order to avoid the high computational complexity of DP-greedy discussed in Section 3,

we used a version of the policy where V = 1 and α = 1, that is

Ag (sv) =
K∑

k=1

P sv

k ·
(
µk + µW

G

(
sk

v+1

))
(17)

and

Ar (sv) =
1

K

K∑

k=1

(
µk + µW

G

(
sk

v+1

))
. (18)

One of the techniques discussed in Section 5, for instance the holdout technique, can now

be used to estimate the term Ag in (17) and the term Ar in (18) from observed data. First,

the samples in {Zk(l)}k=1,...,K are partitioned in two portions to compute µ̂
A
k , σ̂

A
k , µ̂

B
k and

σ̂
B
k (see equations 13, 14, 15 and 16). Then the two plug-in versions (i.e. P̂A

k and P̂B
k ) of

the probability P are derived. We also compute µ̂
SPL2
g ,

(
µ̂

SPL2
g

)A

and
(
µ̂

SPL2
g

)B

which are
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estimators of µg

(
sk

v+1

)
built with the entire set, the first portion and the second portion,

respectively. The associated estimator of Ag is then

Âg =

∑K
k=1 P̂A

k ·
(

µ̂
B
k +

∑W−1
i=0 βi ·

(
µ̂

SPL2
g

)B
)

+ P̂B
k ·
(

µ̂
A
k +

∑W−1
i=0 βi ·

(
µ̂

SPL2
g

)A
)

2

where
∑W−1

i=0 βi · µg

(
sk

v+1

)
is an approximation of µW

G

(
sk

v+1

)
and the estimator of Ar is

returned by

Âr =
1

K

K∑

k=1

(
µ̂k +

W−1∑

i=0

βi · µ̂SPL2
g

)
.

The DP-greedy strategy in the imperfect information state consists then in returning the

action {
u∗ = g if Âg − Âr > 0

u∗ = r if Âg − Âr < 0
.

A pseudo-code of the DP-greedy algorithm follows:

Algorithm 1 The DP-greedy algorithm

1: play each arm at least I times
2: loop
3: Compute the values of Âg and Âr.

4: if Âg − Âr > 0 then

5: k̂← arg maxk{µ̂k}
6: else
7: k̂← random
8: end if
9: play z

k̂

10: end loop

Note that during initialization each arm is tested at least I times (line 1). Then, for each

following step, DP-greedy computes Âg and Âr (line 3) and accordingly decides the action.

If Âg − Âr > 0, it exploits the current best arm (line 5), otherwise it explores (line 7).

7. Experiments and discussions

This section is divided in two parts. The first one assesses the performance of the five esti-

mators described in Section 5 and the second one assesses the performance of the imperfect

information DP-greedy described in Section 6.
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task 1 task 2 task 3 task 4 task 5

µ σ n µ σ n µ σ n µ σ n µ σ n

z1 0 0.5 5 0 1 5 0 2 5 0 4 5 0 6 5
z2 0 0.5 10 0 1 10 0 2 5 0 4 5 0 6 5
z3 0 0.5 5 0 1 5 0.5 1 10 0.5 4 5 0 6 5
z4 0.5 0.5 15 0.5 1 15 0.5 1 4 0.5 2 4 0.5 5 5
z5 1 0.5 10 1 1 10 0.5 1 4 0.5 3 4 0.5 5 5
z6 1 1 5 1 2 5 0.5 5 5
z7 1 2 5

µg 0.9967 0.8936 0.639625 0.4603 0.327

task 6 task 7

µ σ n µ σ n

z1 0 8 4 0 8 4
z2 0 8 4 0 8 4
z3 0 8 4 0 8 4
z4 0.5 1 4 0.5 1 4
z5 0.5 1 4 0.5 1 4
z6 0.5 1 4 0.5 1 4
z7 1 1 4 1 1 400

µg 0.189 0.176

Table 1: Seven synthetic tasks to compare the performance of some µg estimators. For each
task, the first, the second and the last column respectively contains the mean, the standard
deviation and the test number of each arm. The last line contains the value of µg. The tasks
are sorted in a µg-complexity order.

7.1. Estimation experiments

This section compares experimentally the five estimators of µg by means of a set of 7 synthetic

tasks (see table 1). The tasks can be sorted in a µg-complexity increasing order such that

the first tasks can be considered as ”easy” and the last one as ”very difficult”. Note that the

only difference between task 6 and task 7 is the number of tests made on the best alternative

which is hundred time higher in task 7.

To assess the performance of the estimators, each of the seven estimation tasks is ran-

domly sampled M = 10000 times. For m = 1, . . . , M , a data frame
(
{Zk}k∈{1,...,K}

)
m

is

created and used to compute the five estimates (µ̂g)m. Three error measures are considered:

1. the bias

bias = Average
(
µ̂g

)
− µg,

where

Average
(
µ̂g

)
=

1

M

M∑

m=1

(µ̂g)m

2. the variance

var =
1

M

M∑

m=1

(
Average

(
µ̂g

)
− (µ̂g)m

)2
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task 1 task 2 task 3

bias var mse bias var mse bias var mse

µ̂
max
g 0.004 0.0244 0.0244 0.138 0.081 0.100 0.6253 0.145 0.536

µ̂
PL
g −0.009 0.0277 0.0278 0.0452 0.096 0.098 0.4055 0.156 0.321

µ̂
SPL1
g −0.073 0.0615 0.0669 −0.223 0.223 0.273 −0.165 0.497 0.524

µ̂
SPL2
g −0.065 0.0432 0.0476 −0.204 0.167 0.208 −0.147 0.328 0.350

µ̂
loo
g −0.216 0.0341 0.0811 −0.335 0.070 0.182 −0.1997 0.163 0.203

task 4 task 5 task 6

bias var mse bias var mse bias var mse

µ̂
max
g 1.858 1.011 4.466 3.094 2.182 11.754 3.615 6.252 19.321

µ̂
PL
g 1.314 1.044 2.773 2.177 2.206 6.946 2.636 6.425 13.377

µ̂
SPL1
g −0.060 2.607 2.610 −0.054 5.457 5.460 −0.0004 16.711 16.71

µ̂
SPL2
g −0.061 1.942 1.945 −0.063 4.212 4.215 −0.017 11.412 11.411

µ̂
loo
g −0.073 1.009 1.015 −0.068 2.0240 2.028 −0.015 7.057 7.057

task 7

bias var mse

µ̂
max
g 3.542 6.154 18.706

µ̂
PL
g 2.563 6.338 12.908

µ̂
SPL1
g −0.073 16.740 16.744

µ̂
SPL2
g −0.068 11.106 11.110

µ̂
loo
g −0.061 6.908 6.911

Table 2: Results for the seven synthetic tasks. For each task and for each estimator, the
bias, the var and the mse are given.

3. the mean square error

mse =
1

M

M∑

m=1

(
µg −

(
µ̂g

)
m

)2
.

All the results are reported in Table 2. An analysis of the results in terms of bias

variance trade-off follows. For easy problems (i.e. task 1 and 2), µ̂
max
g and µ̂

PL
g are both

good estimators with low mse. This is due to a combination of a relatively small variance

and a small bias. On more difficult tasks, the bias quickly increases and deteriorates the

value of the mse. On the other hand, because of their higher variance and small bias, µ̂
SPL1
g ,

µ̂
SPL2
g and µ̂

loo
g are poor estimators for easy problems but powerful on complex tasks. Note

that thanks to the averaging effect the variance of µ̂
SPL2
g is always lower than the variance

of µ̂
SPL1
g . Also, made exception for the trivial tasks (1 and 2), the estimator of µg which

appears to be the most robust is the leave-one-out estimator µ̂
loo
g .
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B-1 B-2 B-3 B-4 B-5 B-6 B-7 B-8 B-9 B-10 B-11 B-12

K 3 5 10 3 5 10 3 5 10 3 5 10
σk 0.1 0.1 0.1 1 1 1 2 2 2 3 3 3

Table 3: The twelve synthetic benchmarks differ in the number of arms K and in the standard
deviations of the rewards σk.

7.2. Bandit experiments

This section presents the experiments we used to benchmark the performance of our original

DP-greedy algorithm against some semi-uniform state-of-the-art approaches. Nineteen semi-

uniform bandit methods are tested : Ten ε-greedy instances with ε = {0.00, 0.05, 0.10, . . . , 0.45},
eight ε-decreasing-greedy (ε-Dgreedy in short) instances with ε0 = {1, 20, 40, 60, 80, 120, 160, 200}
and our DP-greedy method where the term β is set to 0.98.

We consider fifteen benchmark problems denoted B-1, B-2,. . . ,B-15, respectively. The

first twelve tasks are based on synthetically generated datasets, the remaining ones on real

networking datasets. The cumulative regret (4) is used to measure and compare the perfor-

mance of the policies. Each experiment is initialized by collecting I = 6 reward values per

arm.

For the synthetic benchmarks we set the horizon H = 4000. Each synthetic benchmark

is made of 100 randomly generated K-armed bandit tasks obtained by uniformly sampling

the value means in the interval [0, 1]. The benchmarks differ in terms of number of arms

and standard deviation of the rewards (see table 3). For each task, the rewards are normally

distributed (zk ∼ N [µk, σk]). The performance of a bandit algorithm on these tasks is

obtained by averaging over the whole 100 tasks.

The three real benchmarks are based on the real data benchmark proposed in (Vermorel

and Mohri, 2005). In this task, an agent wants to recover data through different network

sources. At each step, the agent selects one source and waits until data is received. The goal

of the agent is to minimize the sum of the waiting times for the successive tests. In order to

simulate the delay, a dataset was built by accessing the home pages of 700 universities (every

10 minutes for about 10 days) and storing the time delay (in milliseconds)2. If we interpret

this task as a bandit problem, each university home page plays the role of an arm and each

delay the role of a (negative) reward. In our experiments, in order to generate a sufficient

number of problem instances, we randomly selected 100 times K = 3, K = 5 or K = 10

universities and computed the performance of the methods over an horizon of H = 4000

2The dataset can be downloaded from http://sourceforge.net/projects/bandit
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Strategies B-1 B-2 B-3 B-4 B-5 B-6 B-7 B-8 B-9

ε = 0.00-greedy 1.7 2.5 3.0 144.1 245.8 249.2 329 466.4 484.5
ε = 0.05-greedy 54.8 66.9 81.2 81.9 147.0 232.7 166.8 300.1 395.6
ε = 0.10-greedy 109.6 132.4 160.6 117.8 191.7 279.4 186.8 317.8 408.3
ε = 0.15-greedy 165 195.8 240.6 158.2 238.5 336.4 216.5 332.8 460.5
ε = 0.20-greedy 218.6 262.1 323.2 203.0 302.9 408.2 249.9 385.6 516.9
ε = 0.25-greedy 274.5 329.5 399.8 251.2 361.1 469.7 289.8 434.0 580.6
ε = 0.30-greedy 326.5 394.0 482.1 296.9 423.3 543.8 331.3 489.0 639.5
ε = 0.35-greedy 382.8 458.5 561.5 342.8 483.5 615.3 369.3 542.3 704.7
ε = 0.40-greedy 437.9 525.6 638.1 390.0 548.1 686.4 410.1 596.9 764.4
ε = 0.45-greedy 491.9 589.6 722.4 440.0 609.0 767.7 455.5 654.6 840.1

ε = 1-Dgreedy 3.2 4.1 4.7 98.7 248.5 245.8 235.9 443.2 476.1
ε = 20-Dgreedy 30.4 32.6 36.7 59.2 101.7 210.2 149.9 295.1 404.7
ε = 40-Dgreedy 56.1 65.4 70.3 71.5 120.5 194.5 152.6 253.4 363.7

ε = 60-Dgreedy 80.6 93.9 104.1 84.3 146.9 214 158.5 254.3 344.0

ε = 80-Dgreedy 103.6 120.7 135.9 102.0 151.6 231.1 167.3 246.3 371.7
ε = 120-Dgreedy 144.8 167.8 195.7 135.6 193.0 280.8 184.5 269.0 379.4
ε = 160-Dgreedy 180.9 212 249.5 163.2 235.1 325.2 203.4 294.6 434.1
ε = 200-Dgreedy 213 254.6 302.0 192.6 274.9 365.8 228.1 324.0 472.7

DP-greedy 1.7 2.5 3.0 42.2 113.3 204.5 149.8 225.5 371.2

Strategies B-10 B-11 B-12 B-13 B-14 B-15

ε = 0.00-greedy 599.3 534.9 603.6 269216.5 218262.2 703681.6

ε = 0.05-greedy 281.9 384.9 559.9 304536.1 279927.3 632359.4
ε = 0.10-greedy 270.7 382.5 561 397862.4 415458.7 910185.1
ε = 0.15-greedy 300.1 401.8 592.4 483358.0 557590.3 1159969.6
ε = 0.20-greedy 323.4 446.8 628.1 598526.7 701810.4 1429159.4
ε = 0.25-greedy 349.0 490.2 684.3 711834.9 855150.9 1716417.5
ε = 0.30-greedy 383.5 541.1 743.8 842439.0 999679.3 1992845.8
ε = 0.35-greedy 424.1 587.3 796.8 972912.6 1157161.6 2254550.4
ε = 0.40-greedy 464.2 639.2 839.9 1095672.3 1308751.1 2572096.9
ε = 0.45-greedy 508.2 693.0 911.6 1225084.2 1464515.5 2853342.4

ε = 1-Dgreedy 569.5 528.4 597.4 271872.5 212768.5 694380.8

ε = 20-Dgreedy 240.3 394.4 543.5 241194.0 209618.8 463682.9

ε = 40-Dgreedy 215.1 347.8 532.5 294683.3 268010.1 566396.1
ε = 60-Dgreedy 216.1 331.4 514.1 286044.7 320430.4 687074.8
ε = 80-Dgreedy 212.2 326.0 497 305760.5 368216.9 793232.9
ε = 120-Dgreedy 216.1 334.8 510.7 380555.2 479727.5 978683.0
ε = 160-Dgreedy 237.7 365.4 519.6 468543.4 576326.0 1153664.9
ε = 200-Dgreedy 256.6 395.6 557.1 551275.7 670023.0 1327895.8

DP-greedy 209.3 322.7 585.9 267489.2 224806.0 675138.0

Table 4: The cumulative regret at round H = 4000 of the nineteen bandit strategies on
the fifteen benchmark problems. Bold figures means that the method is not significantly
different (p-value > 0.01) from the best according to a statistical paired t-test.

tests. The resulting bandit benchmarks are denoted B-13, B-14 and B-15.

The experimental results are shown in Table 4 and Figure 2. Table 4 returns for the

nineteen bandit strategies and the fifteen benchmarks, the average of the cumulative regret

over 100 repetitions at the round H = 4000. A bold value in table 4 means that, for a given

benchmark, the average cumulative regret of a strategy is not significantly different (p-value

> 0.01) from the regret of the best strategy according to a paired t-test.

Two main results have to be stressed:

1. Apart from the benchmark B-12, there is no significant difference between the DP-

greedy performance and the one of the best strategy.

2. In ten benchmarks out of fifteen, DP-greedy belongs to the set of the best semi-uniform
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Figure 2: Evolution of the percentage of exploration during 4000 rounds of DP-greedy on the
synthetic benchmarks. The percentage of exploration in B-1, B-2 and B-3 is always null.

strategies.

Using DP-greedy appears then to be equivalent to use an ε-greedy strategy with the optimal

value of ε. In other words, the DP-greedy strategy appears to outperform semi-uniform

state-of-the-art techniques since it attains the performance of the a-posteriori optimal ε-

greedy strategies. The success of DP-greedy is explained by the adaptative behavior of

DP-greedy which automatically adjusts the exploitation/exploration rate as a function of

the bandit problem and his current state.

An additional insight about the behavior of DP-greedy is returned by the set of Figures 2

which show the curves of the evolution of the percentage of exploration actions during 4000

rounds for the benchmarks B-4 to B-12. Note that for the simplest bandit problems (i.e. B-

1, B-2 and B-3), DP-greedy behaves as a pure exploitation algorithm which seldom explores

the arms. Figure 2 shows that on more complex bandit problems (i.e. when either K or

σ increases), DP-greedy automatically increases the exploration rate at the beginning and,
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when more samples are collected, switches gradually to a pure exploitation mode.

8. Conclusion

In this paper, we propose a new semi-uniform algorithm for the bandit problem and we

introduce the concept of the expected greedy reward. Instead of choosing directly an arm in

a set of K alternatives (like classical bandit algorithms), a semi-uniform bandit algorithm

chooses between two actions : a greedy exploitation action and a random exploration action.

A major issue in such bandit algorithms is then how to trade exploitation and exploration.

In this work, we interpret the bandit problem as a Markov decision problem with perfect

state information where only two actions are possible : greedy or random selection. The

Markov decision problem is solved via dynamic programming techniques whose solution,

in the case of perfect state information, is an algorithm which optimally balances greedy

exploration and random exploitation actions.

We showed that the expected greedy reward is a quantity which plays a major role in

the definition of the algorithm. However, since perfect state information is an unrealistic

assumption for the bandit problem we introduce and discuss five methods to estimate, from

historical data, the expected greedy reward. The availability of accurate estimators makes

possible the definition of a running version of DP-greedy, to be adopted in real tasks with

imperfect state information. This implemented version of DP-greedy addresses the curses of

dimensionality problem of the dynamic program by reducing the recursive horizon. A set of

real and synthetic benchmarks showed that the DP-greedy approach is a feasible, adaptive

and effective way to solve the bandit problem in a semi-uniform way.

Future work will focus on alternative ways to solve the problem of the curses of dimension-

ality in DP-greedy. Although in this paper we adopted the solution of reducing the recursive

horizon, we deem that neuro-dynamic programming techniques ((Bertsekas and Tsitsiklis,

1996)) could speed up the dynamic program by replacing the optimal gain function J∗ (·)
(eq. (5)) by a suitable approximation function.
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