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ABSTRACT
A crucial issue in the design of complex systems is the eval-
uation of a large number of potential alternative designs. A
too expensive evaluation procedure can consequently slow
down the search for good configurations, mainly in the case
of high dimensional parameter spaces.

This paper discusses the use of machine learning tech-
niques for speeding up the evaluation and the exploration of
large design spaces. In particular, two supervised learning
techniques, feedforward neural networks and lazy learning,
are assessed and compared in the task of accelerating the
design of a heat-pipe, a cooling device commonly used in
aereonautics and electronics.
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1 Introduction

The design of a complex product can be seen as a search
problem in the space of design parameters which aims to
maximize the quality of the product, measured by some
given design objectives [12, 3].

This optimization problem is usually multidimen-
sional and multicriteria, given the high number of design
parameters and design objectives to be taken into account.
The difficulty of the design problem is often made heavier
by the fact that the optimizer has to rely on time consum-
ing simulators to calculate the cost function to be optimized
(Figure 1). This is often the case in aeronautics applications
where the relation between the design parameters and the
quality criteria is modeled by time consuming simulators.

Research in automatic design space exploration aims
at defining efficient methods for exploring large design
spaces. This can be achieved by

1. reducing the number of designs to be evaluated

2. reducing the time required to evaluate each design
configuration.

This paper will address the second problem by exploring
the use of supervided machine learning techniques [14] to
speed up the evaluation of design configurations.

Figure 1: Design space exploration with physical simulator

Supervised learning techniques aim to model, on the
basis of a finite set of observations, the relation between
a set of input variables and one or more output variables,
which are considered somewhat dependent on the input.

Our idea is to use machine learning techniques to
model the relation between design parameters (i.e. the
inputs) and design quality criteria (i.e. the outputs) (Fig-
ure 2).

Figure 2: Design space exploration with machine learning
approximator

The relation between the design parameter and the de-
sign quality criteria can be seen as an unknown multi-input
multi-output mapping from the space of parameters to the
space of quality criteria. This mapping is usually given by
physical or expert-based models implemented by numer-
ical simulators [19]. If we want to speed up the design
exploration, it may be convenient to approximate the phys-
ical model by an input/output black box model, trained on
a sufficient number of examples.



The approach we propose consists in (i) using the
available simulator to assess the behavior of the system to
be designed in some parameter configurations (ii) building
a black-box model on the basis of the collected samples (iii)
replace the physical model by our fast approximate simu-
lator for design space exploration purposes.

The traditional approach to supervised learning is
global modeling which describes the relationship between
the input and the output with an analytical function over
the whole input domain. Example of global models are
regression linear models [16] and feedforward neural net-
works [6]. What makes global modeling appealing is the
nice property that even for huge datasets, a parametric
model can be stored in a small memory. Also, the evalu-
ation of the parametric model requires a short program that
can be executed in a reduced amount of time. Nevertheless,
modeling complex input/output relations often requires the
adoption of global nonlinear models, whose learning pro-
cedures are typically slow and analytically intractable. In
particular, tasks like validation, feature selection and adap-
tive learning, which demand the identification of a large
number of different models, appear to be computationally
prohibitive in global nonlinear approaches [7].

For these reasons, in recent years, interest has grown
in pursuing alternatives to global modeling techniques. A
demonstration is the popularity which approaches based on
the divide-and-conquer strategy have gained in the research
community. The divide-and-conquer strategy consists in
attacking a complex problem by dividing it into simpler
problems whose solutions can be combined to yield a solu-
tion to the original problem.

Instances of the divide-and-conquer approach are
neuro-fuzzy inference systems [4] and local modeling tech-
niques [2]. For a comparison of these two approaches
see [8]. This paper will focus on local modeling techniques
whose main feature is not to return a global fit of the avail-
able dataset but perform the prediction of the output for
specific test input values, also called queries. For that pur-
pose, the database of observed input/output data is always
kept in memory and the output prediction is obtained by
interpolating the samples in the neighborhood of the query
point.

This paper will present some preliminary results ob-
tained by using a global learning technique, a feedforward
neural network and a local modeling technique, called Lazy
Learning [1, 7] for the approximate simulation of an aero-
nautic device: the heat pipe. A heat pipe (Figure 3) is a
device for evacuating heat which is increasingly used in
aeronautic systems (eg satellites) as well as in electronics
(eg to cool the CPU in laptops and other embeded devices).

The experimental session of this paper will assess and
compare the prediction accuracy of the two learning meth-
ods trained with a finite number of input/output samples
returned by a heat-pipe simulator, jointly developed by CE-
NAERO1 (Centre of Excellence forin Aereonautical Re-

1www.cenaero.be

search) 2 and Euro Heat Pipes 3

Also, we will address the problem of dimensionality
reduction, that is the problem of detecting on the basis of
data which design parameters are the most relevant for pre-
dicting the value of the design objectives. This problem can
be formulated in a machine learning setting as a problem
of feature selection, (for an up-to-date state of the art on
feature selection see [13]). In particular we will study the
effectiveness of combining local learning techniques with
racing methods [15].

Related work on the use of machine learning tech-
niques for accelerating design space exploration can be
found in [20], where the MARS regression spline algo-
rithm is used in a system simulation framework for em-
bedded systems and in [19, 18] where feedforward neural
networks are used to approximate a Navier-Stokes solver in
a turbomachinery application.

Previous applications of lazy learning to design prob-
lems in embedded systems can be found in [10, 11]

2 The Heat Pipe simulator

Since a couple of decades, the heat pipe technology has
proven its efficiency in the thermal control of highly dis-
sipative equipments such as the electronic component of
satellites. A heat pipe is a closed thermodynamic system
in which a liquid evaporates in the vicinity of a dissipa-
tive source and condenses in contact with a cold region. To
insure its passive working in a microgravity environment,
the heat pipe is composed of a vapour duct surrounded by
a capillary structure. This structure allows for the fluid to
return from the cold zone to the heat source. By using a
large latent heat fluid, the heat pipe absorbs an important
energy quantity during the phase change process, inducing
a very high thermal transport capacity for weak variations
in temperature.

The grooved heat pipe simulator is developed by CE-
NAERO and Euro Heat Pipes. Based on an hydraulic ap-
proach, an iterative scheme proceeds to the balance be-
tween the global friction losses acting on the heat pipe fluid
and the capillary pressure in order to estimate the maximal
heat transport capacity.

3 Machine Learning and system design

The design process of complex systems (e.g. a turbine) can
be schematically represented by the following elements� A vector �������
	�� of design parameters (also

design configuration), where � is called the design
space. In the case of a turbine, design parameters de-
fine the blade geometry.
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Figure 3: A heat pipe

� A vector �������	�� of design objectives which are
used to assess the quality of a design. In the turbine
example, a design objectif is the outlet flow angle.� An evaluator function ��������� which maps the
design space into the objectif space. This could be a
Navier-Stokes simulator in our example� A search algorithm which explores the design space in
order to find good or optimal configurations � accord-
ing to the evaluation vector ������� .
Suppose that a number  of input/output pairs! �#"%$&'")( , *�+�,-$/.0./.1$2 , is obtained by running the simu-

lator, which implements the evaluator function, for  dif-
ferent design configurations. This set can play the role of a
training set for a supervised learning technique.

A learning technique aims to find a suitable function3 �4�5�
� such that the output variable can be accurately
represented by a model in the form6+ 3 �7�#�98;: (1)

where : is usually thought as the term including mod-
elling error, disturbances and noise. If conventional as-
sumptions of normality and whiteness are made on : , it
follows that a reliable prediction of the output, given the
inputs, is returned by <6+ 3 �7�#� (2)

Traditional approaches address linear formulation of the
model

3 �%= � <3 ���#�>+��#?A@ (3)

where the vector of parameters is estimated on the basis
of the observed dataset by using conventional least-squares
techniques. Recent advances in machine learning and data
mining have proposed a set of powerful approximators of
non-linear relationships.

The idea of modelling a process in a black-box fash-
ion, i.e. from a limited amount of observed data, has
been the object of several disciplines from non-linear re-
gression to machine learning and system identification. In

the literature dealing with this problem, two main oppos-
ing paradigms have emerged: local memory-based versus
global methods. Global modelling builds a single func-
tional model of the dataset. This has traditionally been the
approach taken in neural networks [6] and other form of
non-linear statistical regression. The available dataset is
used by a learning algorithm to produce a model of the
mapping and then the dataset is discarded and only the
model is kept. Local algorithms defer processing of the
dataset until they receive request for information (e.g. pre-
diction or local modelling). The classical nearest neigh-
bour method is the original approach to local modelling. A
database of observed input-output data is always kept and
the estimate for a new operating point is derived from an
interpolation based on a neighbourhood of the query point.
The experiments in this paper will compare conventional
feedforward neural networks and a local modelling tech-
nique, called Lazy Learning (LL), which proved to be suc-
cessful in many problems of non-linear data analysis and
time series prediction [9, 7].

4 Lazy Learning

Given two variables �B�B	C� and D�E	 , let us consider
the mapping

3 �F	C�G�H	 , known only through a set of  
examples

� �7�#"%$&'"I�J�LK"NMPO obtained as follows:

 " + 3 ��� " �98;: " $ (4)

where Q#* , : " is a random variable such that ��R : "�S +UT and��R : " :LV S +WT , QYX[Z+�* .
Given a query point �]\ , the parameter @ of a local

first-degree polynomial approximating
3 �^=_� in a neighbor-

hood of ��\ , can be obtained solving the local polynomial
regression:

<@`+Wacb2dCegfNhi Kj "NMPO
kml  "]n �o?" @Pp0qArtsvu �7�o"&$%� \ �w xzy $ (5)

where, given a metric on the space 	v� , u �7�o"&$%� \ � is the
distance from the query point to the *J{}| example, r~�^=_� is a
weight function,

w
is the bandwidth, and where the vectors�o" have been obtained by pre-appending a constant value ,

to each vector �#" in order to consider a constant term in the
regression.

Once obtained the local first-degree polynomial ap-
proximation, a prediction of  \ + 3 �7� \ � , is finally given
by: < \ +�� ?\ <@ (6)

By exploiting the linearity in the parameters of the local
approximator, a leave-one-out cross-validation estimation
of the mean squared error �zR��7�\ n <-\1� q S can be obtained
without any significant overload. In fact, using the PRESS
statistic [16], it is possible to calculate the leave-one-out
error �4���V +E�V n �o�V <@C�c� , without explicitly identifying the
regression parameters

<@C�c� with the Xo{�| case set aside.



If a rectangular weight function r~�^=_� is adopted, the
optimization of the parameter

w
can be conveniently re-

duced to the optimization of the number � of neighbors
to which a unitary weight is assigned in the local regres-
sion evaluation. In other words, we reduce the problem
of bandwidth selection to a search in the space of

w �I�Y�m+u �7�P�I���J$%� \ � , where ���I�Y� is the ��{}| nearest neighbor of the
query point.

The main advantage deriving from the adoption of an
indicator weight function, is that, simply by updating the
parameter

<@>�I�Y� of the model identified using the � near-
est neighbors, it is straightforward and inexpensive to ob-
tain

<@>�I��8E,L� . The recursive algorithm described in [5, 9]
returns for a given query point �]\ , a set of predictions< \ ���Y��+�� ?\ <@>���Y� , together with a set of associated leave-
one-out error vectors �������I�Y� .

On the basis of this information a final prediction
<�\

of the value of the regression function can be obtained in
two different ways: the first is based on the selection of the
best approximator according to a given criterion, while the
second returns a prediction as a combination of more local
models [17].

This paper illustrates and validates the use of Lazy
learning for the task of black-box approximation of physi-
cal models for design. The authors deem that this algorithm
present a set of specific features which make of it a promis-
ing tool for black-box and adaptive system identification in
system design. In particular, we consider as relevant:

The reduced number of assumptions Lazy Learning as-
sumes no a priori knowledge on the process underly-
ing the data. For example, it makes no assumption on
the existence of a global function describing the data
and no assumptions on the properties of the noise. The
only available information is represented by a finite set
of input/output observations. This feature is particu-
larly relevant in real datasets where problems of miss-
ing features, non stationarity and measurement errors
make appealing a data-driven and assumption-free ap-
proach .

On-line learning capability. The Lazy Learning method
can easily deal with on-line learning tasks where the
number of training samples increases with time. In
this case, the adaptiveness of the method is obtained
by simply adding new points to the stored dataset.
This make such techniques particularly suitable for
design problems where the number of available sam-
ples increases all along the exploration of the design
space.

Effective feature selection: The usefulness of a local
modeling approach for reducing the cost of feature
selection was first presented in [15]. The idea con-
sists in assessing a large number of feature subsets by
performing cross-validation only on a reduced test set.
On the basis of well-known statistical results, it is pos-
sible to show that families of good feature subsets can

Figure 4: Diagram representing a groove of a heat pipe.

be rapidly found by quickly discarding the bad subsets
and concentrating the computational effort on the bet-
ter ones. This model selection technique was called
the Hoeffding race by Maron and Moore [15], with
reference to Hoeffding’s formula which puts a bound
on the accuracy of a sampled mean of  observations
as an estimator of the expected value.

5 Some experimental results

The prediction accuracy of two learning algorithms, a feed-
forward neural network and Lazy Learning are assessed on
the basis of input/output samples generated by the simula-
tor described in Section 2.

The feedforward neural network has two layers, the
first (hidden) based on a sigmoidal transfer function and
the second (output) based on a linear transfer function. The
number of nodes in the hidden layer is determined using
an empirical relation which is a function of the number of
training data, the number of inputs and the number of out-
puts. For more details on the technique, we refer the reader
to [19, 18]

Note that, in the case of LL, we train a different in-
put/output model for each output: this means that the multi-
input multi-output problem is treated as a series of multi-
input single-output problems.

Two sessions of experiments are carried out, the first
with no feature selection, the second with a preliminary se-
lection of the relevant design parameters.

The experiments use two datasets, described in the
following section, which differ for the number of design
parameters and the number of samples.

5.1 The two datasets

The first dataset, henceafter u , , is composed of  �+�,L�c�-T
samples. It has ��+W� inputs and ��+D� outputs. The input
design parameters are (see Figures 4 and 5):� the internal diameter of the heat pipe.� the diameter of the groove ( ���L�/� ).



Figure 5: A section of a heat-pipe

� the inclination angle of the heat pipe.

The output design criteria are:� The power (in Watt) released by the heat pipe.� The external diameter of the heat pipe.

The second dataset, henceafter u � , is composed of �+��-�'T samples. It has �~+U� input variables and �
+� output variables. The input design parameters are (see
Figures 4 and 5):� The internal diameter of the heat pipe.� The number of groove in the heat-pipe.� The diameter of the groove ( � �L�/� ).� The width of the bottom of the grooves ( � � ).� The width of the top of the grooves ( �¢¡ ).� The depth of the grooves (

w
).

The two output design criteria are the same as in u , .
5.2 The validation procedure

We adopt the following procedure in order to assess the
prediction accuracy.

The total amount of the samples is randomly divided
into two halves; the first half is used for the training and
the second half is used for the validation. The accuracy is
returned by the average of the squared prediction errors of
the learned models in the validation set.

The results are reported in Table 1 and in Table 2 foru , and u � , respectively.

5.3 Feature selection

We applied the racing feature selection algorithm [15] to
reduce the dimensionality of the datasets u , and u � .

Learner Output 1 Output 2
LL 2.9e-04 2.2e-05
NN 5.0e-03 1.2e-04

Table 1: Before feature selection: Mean square prediction
error for the two outputs of u ,

Learner Output 1 Output 2
LL 1.4e-02 1.0e-05
NN 2.2e-02 4.8e-05

Table 2: Before feature selection: Mean square prediction
error for the two outputs of u �
Dataset 1: As far the first output variable of u , is con-

cerned, no reduced input dimensionality was found.

As far the second output variable of u , is concerned,
the feature selection algorithm returned an input set
composed of �`+E� variables , where the third design
parameter is not considered.

We report in Table 3 the mean square prediction errors
of the two learning methods for the second output.

Dataset 2: the feature selection algorithm reduced the di-
mensionality to ��+D£ both for the first output variable
(last design parameter excluded) and the second out-
put variable (second design parameter excluded). The
mean square prediction error for the first and the sec-
ond output are reported in Table 4 and 5 , respectively.

6 Conclusion and future work

The need for repetitive evaluations of the quality of a sys-
tem during the design process asks for rapid and precise
predictors to be employed in the exploration of the design
space

The preliminary results presented in this paper show
that machine learning techniques can return very precise
estimation of the quality objectives on the basis of a lim-
ited amount of observations. In particular the Lazy Learn-
ing technique appears competitive with more conventional
machine learning techniques, like feedforward neural net-
works.

This appears still more relevant if we consider that
Lazy Learning features some nice properties for the prob-

Learner variable 2
LL 7.0e-07
NN 2.6e-05

Table 3: After feature selection: Mean square prediction
error for the second output of u ,



Learner variable 1
LL 5.7 e-03
NN 1.3 e-02

Table 4: After feature selection: Mean square prediction
error for the first output of u �

Learner variable 2
LL 8.8e-06
NN 1.5e-04

Table 5: After feature selection: Mean square prediction
error for the second output of u �
lem of multidimensional system design, like rapid tuning,
fast adaptation and effective feature selection.

Future works will focus on (i) extending the experi-
ments to a larger number of design parameters and quality
objectives and (ii) integrating the black-box approximators
in the optimization process.
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